

Journal of Computing Innovations

and Emerging Technology

Volume 1 | Issue 2 | December (2025)

Published by Novamind Press

JCIET

Journal of Computing

Innovations and

Emerging Technology

 33

How Code Smell And Refactoring Affect The

Software Product Line Maintainability

Maryam Mehmood1*, Asad Ijaz2

1 Software Engineering Department, National University of Sciences and Technology (NUST) and National University of Modern

Languages, Pakistan

2 Mechanical Engineering Department, University of Science and Technology, MUST AJK, Pakistan
*Corresponding author: maryam.mehmood@numl.edu.pk

Abstract — Code cloning remains a significant challenge in modern software development, particularly within the Object-Oriented

paradigm and advanced methodologies such as the Software Product Line (SPL) approach. In this context, code smells and refactoring

can be seen as two sides of the same coin—one representing the symptoms of poor design, and the other offering systematic strategies

for improvement. Among the various software quality attributes, maintainability stands out as a critical factor in determining the long-

term success of SPL-based systems. However, the presence of cloned code directly impacts this maintainability, making the detection

and mitigation of such clones an essential concern. Although multiple quality models exist to assess the relationship between code

cloning, refactoring, and maintainability, most lack the granularity to accurately capture the specific effects of code cloning within

SPL environments. This research undertakes a systematic literature review to consolidate and analyze findings from existing surveys,

with a particular focus on identifying software metrics capable of evaluating the impact of refactoring on SPL maintainability.

Refactoring serves as a deliberate means to eliminate code smells, and numerous tools and techniques have been developed to support

this process. By synthesizing the current body of knowledge, this study provides a foundation for researchers and practitioners to better

understand, select, and apply effective practices and tools to reduce code smells, improve maintainability, and ultimately enhance the

overall quality of SPL-based software systems

Keywords—Code Clone, Code Smell, Maintainability, Refactoring, Software Product Line

Manuscript received 14 Sep. 2025; revised 24 Sep. 2024; accepted 25 Sep. 2025. Date of publication 15 Des. 2025.

Journal of Computing Innovation and Emerging Technology is All rights reserved.

I. INTRODUCTION

Maintenance is very important for every software system.
Authors [1] and [2] reported that about 50-80 % software costs
are due to maintenance tasks, like fixing of faults related to
software design and implementation, plat form changes in
terms of hardware or OS and addition of new capabilities or
alteration of existing functionalities. The definition of
software architecture as described by Bass in 1999 is as
follows: “The software architecture of a program or
computing system refers to its structural design,
encompassing the software components, their externally
observable characteristics, and the interconnections or
relationships that exist among them [3]-[4]. In recent passing

years a new approach of software reuse has emerged and
become popular in industry and among academicians SPL.
The fundamental concept of SPL is to segregate the mutual
parts of a product’s family from those parts of the product
which are different. The common parts create a platform
which is used to serve as mutual baseline for all the products
related to same product family. Software Product Line (SPL)
refers to the methodologies, techniques, and tools employed
to develop a collection of similar software systems, built from
a shared set of core attributes and produced through common
development practices. With the development of source code,
the rise in probability of duplication of the code becomes more
noticeable and spreads throughout the various segments of the
program. Such duplication of codes is recognized as Code

 34

Clones or Smells [5]-[6]. Code smells violate the design
principles of codin. They increase technical debt [7], affecting
software maintenance [8]-[9], and evolution [10]. This is one
of the major problems developers have to face during
development of Software Product Lines which ends up
affecting the software quality factors such as Maintainability,
these further effects development costs negatively resulting in
high cost and less efficient software [11]-[12]. Therefore, it is
highly imperative to take necessary actions, right from the
start of the SPL development, to address and control the code
clones. One popular way to tackle the code clones is that of
refactoring which effectively eliminates the code clones. Code
clones help in the identification process of SPL refactoring.
Refactoring is the process of altering the code of the software
in a delicate way that its internal structure is improved while
its external behavior remains exactly the same [13]-[15]. The
three main steps of refactoring process [16] are (i)
identification of refactoring candidates (bad smells or copied
code), (ii) validation of refactoring effect (validation of
refactoring candidates), and (iii) application of refactoring
[17]-[18] at Fig 1. Refactoring normally causes minimal
changes to the software; however, a refactoring can involve
more refactoring. There are numerous benefits of refactoring,
some of them are improvisation while designing the software,
help improve the understandability of software, speeding up
the programming process by helping locate the bugs easily,
and minimize code duplication [19]-[20]. It becomes very
clear that code clones largely effect the SPL quality which
then adversely effects the factors affecting quality of software
products, resulting in deterioration of performance of software
and bugs/errors in software which increase cost due to
ineffective maintainability. Various parameters for
assessment of software product quality [21] particularly
Maintainability are: Changeability, Testability, Stability,
Analyzability and Maintainability Conformance. In such a
case, it becomes imminent to utilize Quality Models as we
know that they have become a de-facto and widely acceptable
means to describe and manage the quality of software. There
are a total of five methods which are used for quantifying
software’s maintainability [22]-[24]. They are: Hierarchal
multi-dimensional assessment model: views software
maintainability as hierarchy of source code elements,
polynomial regression model: utilizes regression analysis to
determine the association between software maintainability
and metrics, aggregate complexity measure: analyzes
maintainability of software as a function of its entropy,
principal Component Analysis: is a technique that uses
statistics to decrease co-linearity between common
complexity metrics to identify and decreases the total number
of components used to form the regression model, factor
Analysis: is a statistical technique. In this technique the
metrics are orthogonal zed so that they become unobservable
factors, which are thereafter used for modeling the system
maintainability. Even though there are many other quality
models which are capable of quantifying maintainability
aspect of software’s development but all of them obviously
lack the capability of assessing and establishing the
relationship between refactored code and SPL maintainability
[25]-[26].We have particularly chosen the quality factor of
maintainability for software because it is one of the most
crucial factors and in the long run the code clones in the source
code inevitably affect the maintenance of the software [27]-
[29]. Consequently, we pitch a model which would firstly
analyze the impact of code clones on SPL maintainability and
then after the refactoring has been performed, it would analyze

the relationship and impact of altered code on the SPL
maintainability, which will help us to draw our conclusion
[30].

The word smell indicates some in depth issues in the software

either at code level or design level. Code smell indicates the

violation of fundamentals of developing a software that

results in decreased quality of code. It is different from an

error or bug. In other words, it is a clue that indicates

something might get wrong or may lead towards negative

consequences, and affect the software maintenance and

evolution. A composite code or design smell is derived from

one code smell that is connected with other code smell [22].

Categorizing a piece of code as code smell or not is subjective

in nature and depends on different parameters like: language

used for development, developers and development

methodology [22]. Error! Reference source not found.

shows some common code smells.

Fig 1. Code Smells

In Fig 1 there are some code smells are visualized and also

there are some treatments to remove code smells from the

code. As it can be seen that the problem of God Class can be

removed with the help of extract class, extract sub class,

extract interface, replace data value and duplicate object data.

Same is the case for all the code smell types seen in 1st column

and techniques to remove these smells in 2nd column. Code

smells and refactoring are associated, since refactoring is
crucial for removal of code smells by improving quality of

code in terms of clarity, comprehension and simplicity. Also,

if refactoring process is not followed properly, then it may

produce new code smells and degrade the quality

consequently. Together, these both impact the software

quality. Developing quality software is very essential, but

retaining or increasing the quality of software in maintenance

is equally important. As code smells results in quality issues

like high coupling, low cohesion, problems of encapsulation

which effects maintenance and design decisions.

The remaining paper is divided into following sections:

Section 2 presents a literature review related to Software

Product Lines, Refactoring, Code Cloning and a few Quality

 35

Models. The format we adopted for SLR, along with RQs,

identification of related work, selection criteria, quality

assessment, data extraction, and execution are described in

Section 3. Section 4 demonstrates the motivation of this work

performed. The findings and the proposed model, where

relationship is established between refactoring and code

smell on maintainability is discussed in Section 5. In Section

6 the main threats to validity of our study are discussed.

Finally, we will conclude our findings and discuss possible

future work in section 7.

D. Simon et al highlighted the importance of Software

Product Lines (SPL) in managing large-scale software

development across the industry. They argued that the

advantages of SPL over traditional methods have

significantly reshaped the perspectives of software

companies, motivating them to adopt SPL practices even for

their legacy products. In their study, the authors introduced a

lightweight iterative process aimed at facilitating the gradual

integration of product line principles into existing systems by

applying feature analysis to legacy software. However, their

approach deliberately avoids architectural reconstruction of

legacy systems, which, although potentially beneficial, would

result in higher costs.

R. Mitschke et al state that the main aim of SPLs is to promote

reusability and the evolutionary process of common features

to multiple products. To achieve this traceability is a

necessity and therefore the authors have provided a proposal

that each version of an artifact must be associated with a

specific feature version and the dependence of the feature

should also be managed explicitly. However, there is a big

challenge which is faced by development team when

developing SPL and that is to allow controlled evolution of

SPLs.

J. Bosch et al elucidate that the Software Product Line (SPL)

approach enhances software reusability while reducing

development costs. This paradigm enables the sharing of

architecture and reusable components across multiple

products within a family. However, the authors emphasized

that the evolution of SPLs is considerably more complex than

that of traditional software development. This complexity

arises from the continuous emergence of new and sometimes

conflicting requirements, both from existing products within

the SPL and from newly integrated ones. As these

requirements grow and change, the number of features

expands, ultimately increasing the overall complexity of the

product line.

Gacek. C et al discussed that due to large members of SPLs

it is imminent that they should support the description of SPL

as a whole and also the instances of individual products

derived from the product lines. They outlined that there are

scalability issues in SPL approach and issues arise when

combining and supporting various techniques which should

be addressed and catered for properly and efficiently.

S. Apel et al discusses that Feature Oriented Software

Development is a combo of differing ideas, methods, tools

and techniques and not just a single development method.

They state that it is a characteristic of product which is used

for distinguishing software from a family of related software.

The authors have presented an overview of Feature Oriented

Software Development in their work and they have

summarized various works done in the approach of Feature

Oriented Software Development and have established

relationships between different approaches of Feature

Oriented Software Development

C. Kastner et al carried out an empirical study on Feature-

Oriented Software Product Lines with a focus on code

cloning. Their findings revealed that, although the Feature-

Oriented Programming paradigm is intended to mitigate the

cloning issues commonly found in Object-Oriented

approaches, certain limitations result in a considerable

presence of code clones within feature-oriented SPLs. Most

of these clones are directly linked to feature-oriented

programming itself. While refactoring techniques can be

applied to eliminate such clones and improve the quality of

the product line, the underlying factors that give rise to code

cloning remain difficult to quantify, making it challenging to

address them proactively

S. Schulze has primarily focused on code cloning analysis

and their removal and on the reasons due to which code

cloning occurs. He has also proposed a refactoring technique

for preserving the variant nature of compositional SPL, in

order to aid in removal of code clones. He concluded that

although there is a prevalent problem of code clones in SPLs,

the degree of harm that these clones cause in SPLs has not

been accurately realized.

S. Thummalapenta et al have proposed in the study they

published, an automatic approach for categorization of the

evolution of code clone segments. Their study also attempts

to inquire the reason due to which code clones continue to

consistently propagate or evolve independently.

Heitlager argued that the effort required to maintain a

software system is directly proportional to the quality of its

source code. Furthermore, he noted that despite the extensive

body of literature, no definitive methods exist for quantifying

software metrics that can reliably assess software quality

G. Aldekon et al have used an SPL case study for measuring

the maintainability index of each feature of the software

developed using that particular SPL. The have also discussed

ways of improving feature maintainability index and

optimization of maintainability index for making design

decision that will enhance global maintainability.

O. Panchenko et al have proposed the research of matric

based quality indicators in order for assessing the most

significant maintainability characteristics of software. The

model used for quality was obtained from the goal

questionnaire metric approach. The literature research was

followed by expansion of quality model using standard

metrics also some specially defined metrics. A few selective

were validated by authors to foretell maintainability of

software through experiments. They concluded with a note

stating that metrics are very accurate indicators for

 36

assessment of maintainability of a software. And it isn’t

necessary for all metrics to result either and still it is possible

to describe the various aspects of maintainability using

indicating metrics.

D. Coleman et al discussed how automated software

maintainability can be used for guiding the process of

software related decision making. They also applied, to 11

industrial software systems, metrics-based software

maintainability models and used the results produced to

improve the fact-finding method and selection of processes.

T. Thumm et al proposed a method to preserve the variants

in SPLs so that the validity of all SPLs can be ensured after

the refactoring process. The authors also presented the

generalizability of this method for the annotative SPLs.

M. Kuhlemann et al introduced the concept of Refactoring

Feature Modules of RFMs which basically provide extension

through refactoring to feature modules. The study also

concluded that RFMs decrease the number of

incompatibilities and facilitate the reusability of modules.

RFM also reshapes the program structure, which are

composed of feature modules, automatically. To facilitate the

decomposition and reusability of features and refactoring in

RFMs a tool by the name of VAMPIRE is used. He argued

that the effort required to maintain a software system is

directly proportional to the quality of its source code.

Furthermore, he noted that despite the extensive body of

literature, no definitive methods exist for quantifying

software metrics that can reliably assess software quality

Bashir et al implemented the MOMOOD quality model

suggested by Rizvi et al. [13]. The model defines the formula

for maintainability, which takes understandability and

modifiability as arguments. The authors do not state how the

metrics required for maintainability assessment were

measured.

Wijayanayake et al worked on sub characteristics of

maintainability. They measured the analyzability,

changeability, resource utilization and time behavior for each

participant in their experiment doing the refactoring. They

also calculated the maintainability index, WMC, CBO, DIT,

and LOC (see Table1.) for refactored code and code without

refactoring.

Mehta et al focused on the maintainability index. The authors

proposed an approach for the improvement of software

quality attributes by elimination of relevant code smells from

the source code of observed software project. To analyze the

effectiveness of this, work the Maintainability Index

(measured by the JHawk tool) and Relative logical

complexity (measured by the Eclipse Metrics plug-in) are

measured. According to the authors, the combination of

maintainability index and relative logical complexity does

better at estimating the maintainability of a software system

than the maintainability index itself.

Sz˝oke et al measured the refactoring impact on the software

projects by the Columbus QM probabilistic software

maintainability model proposed by Bakota et al. [30]. Quality

characteristics mentioned in the ISO/IEC 25010 standard, are

the basis of this model. The maintainability of the software

project was measured by a tool named Source meter,

developed by the authors of this work.

Reis et al reviewed 83 primary studies, showing that the most

common detection approaches were search-based (30.1%)

and metric-based (24.1%). The most studied code smells

were God Class (51.8%), Feature Envy (33.7%), and Long

Method (26.5%); only about 20% of studies incorporated

visualization to support detection.

Zakeri-Nasrabadi et al analyzed 45 existing datasets and

revealed critical limitations: datasets often suffer from

imbalance, lack of severity levels, and a strong bias toward

Java, with only commonly addressed smells like God Class,

Long Method, and Feature Envy covered; several smells from

Fowler & Beck’s catalog remain unsupported.

Ali et al conducted an SLR highlighting evolving techniques

in code smell detection and refactoring. They observed a shift

from classic object-oriented paradigms toward approaches

tailored for cloud, web, and mobile applications, underlining

a growing need for automated, efficient detection and

refactoring methods.

Lacerda et. al in a tertiary SLR explored relationships

between code smells, detection approaches, refactoring tools,

and quality impacts. It reported that refactoring tends to

improve quality more effectively than merely detecting

smells, mapped the top smells to their detection and

refactoring strategies, and spotlighted 13 open challenges and

unanswered questions in the field.

Recent 2025 studies in code smell detection have shown a

remarkable shift toward transformer-based models, nuanced

code representations, and domain-specific tools. Ali, Rizvi,

and Adil introduced a Transformer-based approach for code

smell detection, demonstrating how these models can

significantly enhance detection accuracy by learning deep

contextual features from source code.

In a complementary effort, researchers examined how code

representation techniques including tree-based, token-based,

and embedding formats affect machine learning detection of

the God Class smell; their findings showed marked

improvements in F₁-scores on the MLCQ dataset, paving the

way for intelligent IDE plugins [31]

 Parallelly, the EnseSmells framework, combining structural

features with pre-trained language models, achieved 5.98%

to 28.26% detection improvements across multiple smell

types, underscoring the benefit of multi-faceted feature

fusion [32]

Expanding detection beyond code, Oztas et al. (2025) tackled

inline code comment smells using both augmented datasets

and classifier models (notably Random Forest yielding 69%

accuracy), providing a solid baseline for future comment-

quality tools [33]

 37

Addressing ML-specific project challenges, MLScent

emerged as a novel static-analysis tool detecting anti-patterns

and smells in ML codebases, including frameworks like

TensorFlow, PyTorch, and scikit-learn—elevating code

quality in data science projects [34].

An innovative study on test smells employed small open-

source LLMs in multi-agent workflows, achieving near-

guaranteed detection (96%) and enabling real-world

refactoring; notably, pull requests generated via these

workflows were accepted in open-source repositories,

showcasing practical applicability [35].

II. METHODOLOGY

Code Smells Taxonomy

The term “code smells” was first introduced by Fowler and

Beck in 1999, who proposed a list of 22 distinct code

anomalies, often referred to as code fragrances. These can

broadly be classified into two categories: dependence-based

and similarity-based smells. At the class level, code smells

are further categorized as those within a class and those that

extend beyond a class.

In contrast, a code clone is a duplicate or near-duplicate

fragment of code, often introduced through copy paste reuse.

Clones are commonly classified into four types, ranging from

exact copies (Type-1) to semantically similar fragments with

different syntax (Type-4).

Code Smell Detection Techniques

Over the years, a variety of techniques have been developed

to identify different types of code smells. These detection

approaches rely on either raw source code or compiled code

representations, which are analyzed for structural or semantic

characteristics. Software metrics whether object-oriented or

otherwise are commonly employed to correlate measurable

properties of code with known code smell patterns. The

required metric values are typically obtained through third-

party tools or via static source code analysis.

Detection tools then process these metrics to determine

whether certain code-smell conditions are met, providing the

identified smells as output. However, static analysis alone

cannot capture all instances of code smells, as certain issues

emerge only at runtime (e.g., due to dynamic dispatch). To

address such limitations, some approaches adopt hybrid

detection techniques that combine static and dynamic

analysis. Moreover, historical information about software

evolution has also been leveraged to enhance the accuracy of

smell detection.

Mapping study Process

To summarize the current research of assessing quality

models for analysis of impact of code refactoring on software

product line maintainability, we have performed a systematic

literature review (SLR) [11], [36], [37]. SLR guidelines. Our

review was performed in five stages (Error! Reference

source not found.): Defining goal and Research Questions,

Identification of Relevant Research Articles, Selection

criteria, Quality assessment and then Data extraction at the

end.

Fig. 2. SLR Design

Research questions:

RQ1: Are there any established software metrics

available for the analyzing the impact of Code

Refactoring on SPL Maintainability?

A software metric can be used to measure the code cloning

problem as code cloning has an impact on maintainability of

software quality and causes an increase in amount of work

required. Multiple software metrics are used to measure

different aspects of the system, before and after refactoring

RQ2: What are the Top ten refactoring techniques and

their effects on the quality attributes?

Practically, it's difficult for the developers to spot refactoring

opportunities, that is; to work out which sort of refactoring

should be applied to mitigate a code smell. Studies reported

that the association between refactoring and smells isn't a 1

to 1 relationship. This article presents top studies which have

been more cited on refactoring techniques. The techniques

which are more frequently used are the extraction techniques

(method, variable, class) [6].

RQ3: What refactoring tools have been identified in

literature?

Refactoring is performed by using some tools. It becomes

difficult for developer to select the appropriate refracting

tool. For this purpose, intense literature surveys are

conducted by the developers. To overcome this issue, we

have presented a precise survey which helps developer to

select the best tool.

RQ4: What is the impact of refactoring and code smell on

maintainability of software Product line?

To understand the impact of refactoring and code smells on

maintainability, it is important to understand about the

associations between refactoring and code with quality

attributes and also available refactoring techniques used on

quality attributes. Code smells and refactoring are associated,

since refactoring is crucial for removal of code smells by

improving quality of code in terms of clarity, comprehension

and simplicity. Also, if refactoring process is not followed

properly, then it may produce new code smells and degrade

the quality consequently.

III. RESULT AND DISCUSSION

Refactoring on SPL Maintainability?

A software metric can be used to measure the code cloning

problem as code cloning has an impact on maintainability of

software quality and causes an increase in amount of work

 38

required. Multiple software metrics are used to measure

different aspects of the system, before and after refactoring.

There are several techniques for finding code clones, some

utilize tokens, strings and some use parse trees. Which

technique is used depends on the goal of measurement.

Existing studies have not yet succeeded in quantifying the

underlying causes of code clones in Feature-Oriented

Programming, nor have they identified the factors leading to

code clones in Delta-Oriented methodologies. Nevertheless,

it is evident that code cloning adversely impacts the quality

of Software Product Lines (SPLs), and these effects, in turn,

propagate to the quality of the software products derived from

such SPLs. The consequences of code cloning include;

Downgraded efficiency, Creeping of bugs and errors into the

software, Deteriorated performance, and Increase in cost due

to poor maintainability.

RQ2: What are the Top ten refactoring techniques and

their effects on the quality attributes?

We have selected top ten studies which have been more cited

on refactoring technique. The techniques which are more

frequently used are the extraction techniques (method,

variable, class). Extract Class is used to detect smells like

applied Duplicated Clones, Divergent Change, Data Clumps

and God Class. Same refactoring can be used for detection of

more than one smells, by taking context under consideration.

Extract Method, Move Method and Extract Class are the most

commonly used than other refactoring techniques. The high

interest of researchers in these techniques indicated the

significant importance of these in the software industry.

Extract Superclass technique is infrequently used. Although

Add Parameter, Rename Field, Inline Temp, and Rename

Method are commonly used techniques. But we have not

found any studies which report opportunities and applications

of these techniques. Instead, Rename Method is often used as

automatic refactoring technique.

Practically, it's difficult for the developers to spot refactoring

opportunities, that is, to work out which sort of refactoring

should be applied to mitigate a code smell. Studies reported

that the association between refactoring and smells isn't a 1

to 1 relationship.

Effects of Refactoring on the Quality Attributes:

Literature reports a process of refactoring for analyzing the

effect on software quality attributes. Refactoring can be

performed by following some basic steps. These steps are: (i)

identification of suspected pieces of code that contains bad

smells, (ii) determine refactoring methods that can be applied

on the suspected code, (iii) selected refactoring method must

not compromise on the software behavior, (iv) perform

refactoring at required places, (v) examine the impact of

refactoring on the software quality attributes, and finally (vi)

perform comparison of code quality before and after

refactoring in order to maintain quality.

Many studies have been performed to analyze the effect of

various refactoring techniques (Move Method, Extract Class,

and Extract Method) on the quality of code. It is reported that

Extract Class has positive impact on some internal quality

attributes such as: cohesion, inheritance, size and also have

negative effect on the internal attributes like coupling and

complexity. Extract Subclass impacts negatively on

complexity and showed inconsistent impact on coupling and

cohesion.

Inline Class method has negative impact on inheritance, and

positive impact on cohesion, coupling, and complexity.

Extract Method affect cohesion, complexity, and size

positively, and remains neutral on inheritance and coupling.

Move Method has an opposite effect on complexity and

coupling, and positive impact on cohesion. The Move Field

refactoring technique effects cohesion in positive manners

while coupling in negative. Complexity is positively and

coupling and cohesion are negatively impacted in

Encapsulate Field method. Replace Data Value with Object

shows positive affects for cohesion and inverse impact for

coupling. Lastly, coupling impacts positively by use of

Replace Method with Method Object..

Based on the above research it can be concluded that the

positive and negative impacts of refactoring on different

quality attributes, helps the practitioners to select appropriate

refactoring technique for elimination of bad smells of codes

along with improvement of quality attributes.

RQ3: What refactoring tools have been identified in

literature?

Refactoring is performed by using some tools. To answer this

research question we explored different studies on tools of

refactoring and among these studies different tools presented.

1) JDeodorant is an Eclipse plug-in that uses metrics and

AST8 to automatically detect bad smells in Java code like

Type Check, Switch Statement, Feature Envy, Long Method

and God class. This tool is frequently used in studies to help

the users to perform refactoring. The study analyzed that

JDeodorant (by using default configuration) detects more bad

smells as compared to PMD and inFusion tools. However,

JDeodorant in detection of smells like: Long Method, God

class and 8 Abstract Syntax Tree, has achieved low results in

terms of precision and recall (about 14%). It is also observed

that JDeodorant performs smell detection along with other

applications of refactoring. This is the strength of this tool,

which made it very popular even having some limitations

2) TrueRefactor is an automatic tool of refactoring. It uses

Genetic Algorithm for selecting the optimal sequence which

eliminates maximum code smells from the source code. For

identification of code smells, source code is first parsed. Then

structure of the software is shown by creating control flow

graphs. For classification of code to explicit code smells,

different metrics are calculated. An example program is

discussed which contains artificially inserted code smells in

 39

order to analyze the effectiveness of TrueRefactor. It

measures (i) the no. of distinct code smells over specified

iterations, and (ii) different quality attributes. Comparison

between initial artifact and final revealed that this tool

successfully eliminated significant number of bad smells.

And also maintained important quality attributes with

improvement. This tool can perform refactoring very well,

but instead of this, its frequent current use is in the area of

UML modification. Both JDeodorant and TrueRefactor, are

the frequently cited and discussed in literature.

3) Eclipse is a popular tool used to support developers in

process of automation of refactoring. The process starts with

verification of prerequisites, then in depth analysis is

performed and finally code is rewritten with the help of

guidelines, with no compromise on the structure of AST. The

benefit of using Eclipse is to make sure the application of

refactoring. As Eclipse supports about twenty refactoring

techniques, so it’s up to developer to detect code smells and

select appropriate refactoring technique. The authors have

reported that on the basis of developer’s habits, it is not an

unimportant process. Now tools are considering these factors

and recommending the developers different refactoring

techniques.

4) IntelliJ IDEA supports about 40 refactoring techniques. It

uses a lexical and syntax parser, namely Program Source

Interface, to transform the source code into Abstract Syntax

Tree. The parser validates the source code. After conversion,

for verification of scope of changes, indentation adjustments

in the code, insertion of blank-lines, change of qualifiers

names and inclusion of libraries in the source code is the

responsibility of Formatter. However, this tool uses built in

Domain-Specific-Language in order to detect fragments in

the Program Source Interface by using a distinct notation.

5) Wrangler is the tool used for refactoring of clones. It is

implemented in Erlang and integrated with Eclipse and

Emacs, with the help of ErlIDE plugin. For the programs of

Erlang, this tool provides interactive refactoring. Wrangler

supports different types of refactoring, detection of code

smells, and mainly detection and elimination of code clones.

RQ4: What is the impact of refactoring and code smell on

maintainability of software Product line?

To understand the impact of refactoring and code smells on

maintainability, it is important to understand about the

associations between refactoring and code with quality

attributes and also available refactoring techniques used on

quality attributes. First the process of refactoring is explained

through a flow chart in Fig 3.

Fig. 3. Refactoring Process

Association between refactoring and the code external

and internal quality attribute:

Different software quality models ISO/IEC 9126, FURPS,

and McCalls Factor Model are reported in the literature and

cited in the studies [[17], [38], [39]. Every model consists of

different software quality attributes which are common in

different quality models. These quality attributes are

classified as internal and external attributes. The examples of

internal attributes are coupling, complexity, cohesion,

inheritance and size, while the maintainability, reusability,

and understandability are the frequently studied external

quality attributes. By using the combination of internal

quality attributes (cohesion, inheritance, coupling, etc.)

external attributes can be quantified. Thus, it is important to

analyze the effect of refactoring on a single attribute rather

than the combination of internal quality attributes. But the

researchers conducted more studies to analyze the impact of

refactoring on the external quality attributes as the experts are

more interested in these attributes. The next most investigated

issue of refactoring is the selection of code smells to be

corrected based on its relative importance. Also, some studies

identified and explored the relation of code smells type with

the quality attributes. The type of identified relationship is

different from author to author. Many code smells mentioned

by Fowler et alcan affect multiple quality attributes, like

maintainability, understandability and complexity, at the

same time. These quality attributes have major influence on

the software maintenance costs. Hence, the code smells

which are related with these quality attributes will be given a

highest priority for elimination from the software.

Similarly, some studies investigated that refactoring may

produce negative effect on different software quality

attributes. Doing changes in the code that doesn’t need to be

refactor, may result in low quality of the code instead of

improvement. Therefore, refactoring doesn’t guarantee the

improvement of all software quality attributes.

 40

Maintenance is one of the most essential features for software

products. So far, we have seen quite a lot of researches about

code smells, metrics, tools and techniques to remove these

smells from Software Products line. There are many

researches available regarding code metrics, techniques and

tools. With the help of this review, we are able to identify that

different tools are showing different results in different cases.

They are incompatible for some scenarios. This systematic

literature review helps us identify tools and techniques to

minimize code smells. SPL (software Product Line) helps us

build software products using software engineering methods,

techniques, metrics and tools using collection of similar

software systems from software assets using common

production lines. This is one of the best approaches to reuse

software products. It reduces cost and effort by reusing

existing features and managing the variability between the

different products with respect of particular constraints. With

the help of this technique, we can reuse core assets of a

company working on software product line. Code smells are

the main issue when it comes to reusing of assets. To

overcome the above-mentioned problem, we can move

towards refactoring that helps to improve the internal

structure of source code without disturbing the external

behavior of the software product. Purpose of refactoring is to

reuse software without the issue of code smells also it

increases maintainability and helps improve quality of

software product. It is basically restructuring the code by

applying basic refactoring keeping in mind not to disturb

internal structure of code so that it has no impact on the

external behavior of software. There are so many code

refactoring techniques available in literature. Ten most

important techniques are described in this review article;

Extract Class, Extract Subclass, Extract Method, Inline Class,

Move Method, Move Field, Encapsulation Field Method,

Replace Field, Replace Method, Rename Method. By

removing code smells using refactoring we take source code

having any sort of issues as an Input and produce a good

quality code as an output. This output code can be reused in

future software product development. We can identify code

smell with the help of these refactoring techniques. We can

also restructure code in order to remove code smell.

Software Product Line (SPL) refers to a collection of related

software systems that share common features while also

supporting variability, with the primary objective of

maximizing reusability [20]. The SPL paradigm enhances

software productivity and quality by exploiting similarities

among systems and managing them within a reuse-driven

framework. Inspired by industrial product line practices, SPL

aims to reduce development costs and effort while improving

overall efficiency. In software engineering, code smells are

widely recognized as indicators of poor design choices or

undesirable code characteristics. Similar to traditional

systems, SPL artifacts can also exhibit various code

anomalies. If these anomalies, or code smells, are not

systematically addressed, the maintainability and quality of

the SPL may deteriorate over time, particularly as the system

evolves. Moreover, anomalies at the SPL model level can

propagate across derived products, compounding the

problem. While code smells are well-studied in conventional

single-system development, their presence in SPLs represents

a relatively new area of research. For instance, introduced the

notion of “Variability Smells” specific to SPLs. Several

refactoring tools have been developed to address such issues,

including J-Deodorant, True Refactor, Eclipse

Refactoring, IntelliJ IDEA, and Wrangler. This review

highlights how practitioners can evaluate software

maintainability by mapping widely used metrics to the tools

that compute them. It also provides guidance for researchers

and developers aiming to design or extend tools for emerging

programming languages. Furthermore, the review identifies

tools that support the calculation of popular maintenance

metrics, outlines their language support, and points to open-

source solutions that can serve as practical references for

developing equivalent tools for diverse programming

environments.

Threats to validity

This section is about the threats and some mitigations about

the threats. The search string should be very well defined to

get the precise results. First main issue in this SLR type

research is the use of keywords to find the relevant topics. We

have tried to select the best possible synonyms to get the max

output. The chosen databases for the research is also a major

concern. There is quite a big change that there are many

relevant topics in other electronic repositories as well. Which

is also a threat to validity to mitigate this threat we performed

snowballing, where the citations of the selected papers are

verified through a list of references to find other related

studies not included initially on our search. All the topics

selected for this SLR are written in English language, that

doesn’t mean there is no relevant topic in other languages.as

we know the primary venue of scientific research is written

in English language. So, we assume that our selected

literature is enough to conclude a result. An investigation can

be rehashed with similar outcomes. Our research can easily

recreate following the means depicted and using the search

strings.

IV. CONCLUSION

After the text edit has been completed, the paper is ready for
the template. Duplicate the template file by using the Save As
command, and use the naming convention prescribed by your
conference for the name of your paper. In this newly created
file, highlight all of the contents and import your prepared text
file. You are now ready to style your paper; use the scroll
down window on the left of the MS Word Formatting toolbar.

With the rapid expansion of Software Product Lines (SPLs),

a significant number of code clones inevitably find their way

into the source code. This not only leads to performance

degradation but also increases the likelihood of bugs, errors,

and higher maintenance demands. Code cloning is

particularly prevalent in SPL methodology due to its

emphasis on reusability. However, excessive cloning

complicates maintenance efforts and directly undermines

overall software quality.

To address this challenge, we have proposed a visualization-

based approach to illustrate the effects of code cloning and

the role of refactoring in enhancing SPL maintainability.

 41

One limitation of this study is that the search strategy was

limited to five databases (IEEE Xplore, ACM Digital Library,

SpringerLink, ScienceDirect, and Google Scholar). Although

these sources cover a substantial portion of the software

engineering literature, additional databases such as Scopus

and Web of Science may yield further relevant studies.

Incorporating them would require re-executing the entire

review protocol, which was beyond the scope of the current

manuscript. We consider this an important extension for

future work.

Our findings aim to provide researchers with deeper insights

into effective practices and tools for mitigating code smells,

thereby improving quality. Furthermore, we recommend

future studies to explore the real-world objectives of

refactoring as employed by industry professionals, assess its

measurable impact on quality, and advance the development

of intelligent refactoring tools capable of tracking and

evaluating refactoring activities and their benefits over time.

ACKNOWLEDGMENT

The authors would like to thank the Department of
Software Engineering, NUST/NUML, for providing support
and resources during the course of this research.

REFERENCES

[1] W. LÖWE and T. PANAS, “RAPID CONSTRUCTION OF

SOFTWARE COMPREHENSION TOOLS,” International
Journal of Software Engineering and Knowledge Engineering,

vol. 15, no. 06, pp. 995–1025, Dec. 2005, doi:

10.1142/S0218194005002622.

[2] A. Telea and L. Voinea, “Visual software analytics for the build

optimization of large-scale software systems,” Comput Stat, vol.
26, no. 4, pp. 635–654, Dec. 2011, doi: 10.1007/s00180-011-0248-

2.

[3] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada,

“Software Design Smell Detection: a systematic mapping study,”

Software Quality Journal, vol. 27, no. 3, pp. 1069–1148, Sep.
2019, doi: 10.1007/s11219-018-9424-8.

[4] P. Hegedűs, I. Kádár, R. Ferenc, and T. Gyimóthy, “Empirical

evaluation of software maintainability based on a manually

validated refactoring dataset,” Inf Softw Technol, vol. 95, pp. 313–

327, Mar. 2018, doi: 10.1016/j.infsof.2017.11.012.
[5] M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-

Tamimi, “Code Smells Analysis Mechanisms, Detection Issues,

and Effect on Software Maintainability,” in 2019 IEEE Jordan

International Joint Conference on Electrical Engineering and

Information Technology (JEEIT), IEEE, Apr. 2019, pp. 663–666.
doi: 10.1109/JEEIT.2019.8717457.

[6] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A.

De Lucia, “On the diffuseness and the impact on maintainability

of code smells,” in Proceedings of the 40th International

Conference on Software Engineering, New York, NY, USA:
ACM, May 2018, pp. 482–482. doi: 10.1145/3180155.3182532.

[7] M. Misbhauddin and M. Alshayeb, “UML model refactoring: a

systematic literature review,” Empir Softw Eng, vol. 20, no. 1, pp.

206–251, Feb. 2015, doi: 10.1007/s10664-013-9283-7.

[8] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T.
Dyba, “Quantifying the Effect of Code Smells on Maintenance

Effort,” IEEE Transactions on Software Engineering, vol. 39, no.

8, pp. 1144–1156, Aug. 2013, doi: 10.1109/TSE.2012.89.

[9] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in 2013

35th International Conference on Software Engineering (ICSE),

IEEE, May 2013, pp. 682–691. doi: 10.1109/ICSE.2013.6606614.

[10] J. Erickson, Impala Performance Update: Now Reaching DBMS-

Class Speed. Cloudera Inc, 2014.
[11] P. Kouros, T. Chaikalis, E.-M. Arvanitou, A. Chatzigeorgiou, A.

Ampatzoglou, and T. Amanatidis, “JCaliper Search-based

Technical Debt Management,” in Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing, New York, NY,

USA: ACM, Apr. 2019, pp. 1721–1730. doi:

10.1145/3297280.3297448.
[12] Y. Mehta, P. Singh, and A. Sureka, “Analyzing Code Smell

Removal Sequences for Enhanced Software Maintainability,” in

2018 Conference on Information and Communication Technology

(CICT), IEEE, Oct. 2018, pp. 1–6. doi:

10.1109/INFOCOMTECH.2018.8722418.
[13] O. Poy, M. Á. Moraga, F. García, and C. Calero, “Impact on

energy consumption of design patterns, code smells and

refactoring techniques: A systematic mapping study,” Journal of

Systems and Software, vol. 222, p. 112303, Apr. 2025, doi:

10.1016/j.jss.2024.112303.
[14] D. Ogenrwot, J. Nakatumba-Nabende, J. Businge, and M. R. V.

Chaudron, “Empirical Investigation of the Relationship Between

Design Smells and Role Stereotypes,” Jun. 2024.

[15] X. Han et al., “Code Smells Detection via Modern Code Review:

A Study of the OpenStack and Qt Communities,” Cornell
University, May 2022, [Online]. Available:

http://arxiv.org/abs/2205.07535

[16] R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for

Refactoring,” in Proceedings of the Third International

Symposium on Women in Computing and Informatics, New York,
NY, USA: ACM, Aug. 2015, pp. 228–234. doi:

10.1145/2791405.2791463.

[17] S. Vidal, I. berra, S. Zulliani, C. Marcos, and J. A. D. Pace,

“Assessing the Refactoring of Brain Methods,” ACM Transactions

on Software Engineering and Methodology, vol. 27, no. 1, pp. 1–
43, Jan. 2018, doi: 10.1145/3191314.

[18] Y. Mehta, P. Singh, and A. Sureka, “Analyzing Code Smell

Removal Sequences for Enhanced Software Maintainability,” in

2018 Conference on Information and Communication Technology

(CICT), IEEE, Oct. 2018, pp. 1–6. doi:
10.1109/INFOCOMTECH.2018.8722418.

[19] R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for

Refactoring,” in Proceedings of the Third International

Symposium on Women in Computing and Informatics, New York,
NY, USA: ACM, Aug. 2015, pp. 228–234. doi:

10.1145/2791405.2791463.

[20] O. Poy, M. Á. Moraga, F. García, and C. Calero, “Impact on

energy consumption of design patterns, code smells and

refactoring techniques: A systematic mapping study,” Journal of
Systems and Software, vol. 222, p. 112303, Apr. 2025, doi:

10.1016/j.jss.2024.112303.

[21] J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro,

and C. Anslow, “Code Smells Detection and Visualization: A

Systematic Literature Review,” Archives of Computational
Methods in Engineering, vol. 29, no. 1, pp. 47–94, Jan. 2022, doi:

10.1007/s11831-021-09566-x.

[22] K. Borowski, B. Balis, and T. Orzechowski, “Semantic Code

Graph An Information Model to Facilitate Software

Comprehension,” IEEE Access, vol. 12, pp. 27279–27310, 2024,
doi: 10.1109/ACCESS.2024.3351845.

[23] N. R. Ravari, R. Latih, and A. Mohd Zin, “Multi-Language

Program Understanding Tool,” Int J Adv Sci Eng Inf Technol, vol.

13, no. 4, pp. 1554–1560, Aug. 2023, doi:

10.18517/ijaseit.13.4.18019.
[24] S. H. S. Almadi, D. Hooshyar, and R. B. Ahmad, “Bad Smells of

Gang of Four Design Patterns: A Decade Systematic Literature

Review,” Sustainability, vol. 13, no. 18, p. 10256, Sep. 2021, doi:

10.3390/su131810256.

[25] G. Kaur and B. Singh, “Improving the quality of software by
refactoring,” in 2017 International Conference on Intelligent

Computing and Control Systems (ICICCS), IEEE, Jun. 2017, pp.

185–191. doi: 10.1109/ICCONS.2017.8250707.

[26] N. R. Ravari, R. Latih, and A. Mohd Zin, “Multi-Language

Program Understanding Tool,” Int J Adv Sci Eng Inf Technol, vol.
13, no. 4, pp. 1554–1560, Aug. 2023, doi:

10.18517/ijaseit.13.4.18019.

[27] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A.

De Lucia, “On the diffuseness and the impact on maintainability

of code smells,” in Proceedings of the 40th International
Conference on Software Engineering, New York, NY, USA:

ACM, May 2018, pp. 482–482. doi: 10.1145/3180155.3182532.

[28] A. Rathee and J. K. Chhabra, “Restructuring of Object-Oriented

Software Through Cohesion Improvement Using Frequent Usage

Patterns,” ACM SIGSOFT Software Engineering Notes, vol. 42,
no. 3, pp. 1–8, Sep. 2017, doi: 10.1145/3127360.3127370.

 42

[29] K. Solanki and S. Dalal, “Analysis of Research Trends Towards

Types of Code Clone Detection Techniques,” Indian J Sci Technol,
vol. 16, no. 7, pp. 468–475, Feb. 2023, doi:

10.17485/IJST/v16i7.2219.

[30] G. Kaur and B. Singh, “Improving the quality of software by

refactoring,” in 2017 International Conference on Intelligent

Computing and Control Systems (ICICCS), IEEE, Jun. 2017, pp.
185–191. doi: 10.1109/ICCONS.2017.8250707.

[31] D. Shanmugasundaram, P. Arivukkarasu, H. Chen, and H. Cai,

“Deep Learning Representations of Programs: A Systematic

Literature Review,” ACM Comput Surv, vol. 58, no. 5, pp. 1–37,

Apr. 2026, doi: 10.1145/3769008.
[32] E. Jabrayilzade, A. Yurtoğlu, and E. Tüzün, “Taxonomy of inline

code comment smells,” Empir Softw Eng, vol. 29, no. 3, p. 58, May

2024, doi: 10.1007/s10664-023-10425-5.

[33] Md. A. Hossain, J. Jiang, J. Han, M. A. Kabir, J.-G. Schneider, and

C. Liu, “Inferring data model from service interactions for
response generation in service virtualization,” Inf Softw Technol,

vol. 145, p. 106803, May 2022, doi: 10.1016/j.infsof.2021.106803.

[34] B. Zhang et al., “A Comprehensive Evaluation of Parameter-

Efficient Fine-Tuning on Code Smell Detection,” Jun. 2025.

[35] R. Melo et al., “Agentic LMs: Hunting Down Test Smells,” Oct.
2025, doi: 10.1109/MS.2025.3621356.

[36] M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-

Tamimi, “Code Smells Analysis Mechanisms, Detection Issues,
and Effect on Software Maintainability,” in 2019 IEEE Jordan

International Joint Conference on Electrical Engineering and

Information Technology (JEEIT), IEEE, Apr. 2019, pp. 663–666.

doi: 10.1109/JEEIT.2019.8717457.

[37] S.-C. Necula, F. Dumitriu, and V. Greavu-Șerban, “A Systematic
Literature Review on Using Natural Language Processing in

Software Requirements Engineering,” Electronics (Basel), vol. 13,

no. 11, p. 2055, May 2024, doi: 10.3390/electronics13112055.

[38] R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for

Refactoring,” in Proceedings of the Third International
Symposium on Women in Computing and Informatics, New York,

NY, USA: ACM, Aug. 2015, pp. 228–234. doi:

10.1145/2791405.2791463.

[39] V. Mehta, S. Bawa, and J. Singh, “WEClustering: word

embeddings based text clustering technique for large datasets,”
Complex & Intelligent Systems, vol. 7, no. 6, pp. 3211–3224, Dec.

2021, doi: 10.1007/s40747-021-00512-9.

	I. Introduction
	II. methodology
	III. result and discussion
	IV. conclusion
	Acknowledgment
	References

