JCIET

Journal of Computing Innovations
and Emerging Technology

N Journal of Computing
| Volume 1| Issue 2 | December (2025) Innovations and

Emerging Technology

Published by Novamind Press

How Code Smell And Refactoring Affect The
Software Product Line Maintainability

Maryam Mehmood", Asad Ijaz?
1 Software Engineering Department, National University of Sciences and Technology (NUST) and National University of Modern
Languages, Pakistan
:Mechanical Engineering Department, University of Science and Technology, MUST AJK, Pakistan

*Corresponding author: maryam.mehmood@numl.edu.pk

Abstract — Code cloning remains a significant challenge in modern software development, particularly within the Object-Oriented
paradigm and advanced methodologies such as the Software Product Line (SPL) approach. In this context, code smells and refactoring
can be seen as two sides of the same coin—one representing the symptoms of poor design, and the other offering systematic strategies
for improvement. Among the various software quality attributes, maintainability stands out as a critical factor in determining the long-
term success of SPL-based systems. However, the presence of cloned code directly impacts this maintainability, making the detection
and mitigation of such clones an essential concern. Although multiple quality models exist to assess the relationship between code
cloning, refactoring, and maintainability, most lack the granularity to accurately capture the specific effects of code cloning within
SPL environments. This research undertakes a systematic literature review to consolidate and analyze findings from existing surveys,
with a particular focus on identifying software metrics capable of evaluating the impact of refactoring on SPL maintainability.
Refactoring serves as a deliberate means to eliminate code smells, and numerous tools and techniques have been developed to support
this process. By synthesizing the current body of knowledge, this study provides a foundation for researchers and practitioners to better
understand, select, and apply effective practices and tools to reduce code smells, improve maintainability, and ultimately enhance the
overall quality of SPL-based software systems

Keywords—Code Clone, Code Smell, Maintainability, Refactoring, Software Product Line

Manuscript received 14 Sep. 2025; revised 24 Sep. 2024; accepted 25 Sep. 2025. Date of publication 15 Des. 2025.
Journal of Computing Innovation and Emerging Technology is All rights reserved.

I. INTRODUCTION

Maintenance is very important for every software system.
Authors [1] and [2] reported that about 50-80 % software costs
are due to maintenance tasks, like fixing of faults related to
software design and implementation, plat form changes in
terms of hardware or OS and addition of new capabilities or
alteration of existing functionalities. The definition of
software architecture as described by Bass in 1999 is as
follows: “The software architecture of a program or
computing system refers to its structural design,
encompassing the software components, their externally
observable characteristics, and the interconnections or
relationships that exist among them [3]-[4]. In recent passing

33

years a new approach of software reuse has emerged and
become popular in industry and among academicians SPL.
The fundamental concept of SPL is to segregate the mutual
parts of a product’s family from those parts of the product
which are different. The common parts create a platform
which is used to serve as mutual baseline for all the products
related to same product family. Software Product Line (SPL)
refers to the methodologies, techniques, and tools employed
to develop a collection of similar software systems, built from
a shared set of core attributes and produced through common
development practices. With the development of source code,
the rise in probability of duplication of the code becomes more
noticeable and spreads throughout the various segments of the
program. Such duplication of codes is recognized as Code

Clones or Smells [5]-[6]. Code smells violate the design
principles of codin. They increase technical debt [7], affecting
software maintenance [8]-[9], and evolution [10]. This is one
of the major problems developers have to face during
development of Software Product Lines which ends up
affecting the software quality factors such as Maintainability,
these further effects development costs negatively resulting in
high cost and less efficient software [11]-[12]. Therefore, it is
highly imperative to take necessary actions, right from the
start of the SPL development, to address and control the code
clones. One popular way to tackle the code clones is that of
refactoring which effectively eliminates the code clones. Code
clones help in the identification process of SPL refactoring.
Refactoring is the process of altering the code of the software
in a delicate way that its internal structure is improved while
its external behavior remains exactly the same [13]-[15]. The
three main steps of refactoring process [16] are (i)
identification of refactoring candidates (bad smells or copied
code), (ii) validation of refactoring effect (validation of
refactoring candidates), and (iii) application of refactoring
[17]-[18] at Fig 1. Refactoring normally causes minimal
changes to the software; however, a refactoring can involve
more refactoring. There are numerous benefits of refactoring,
some of them are improvisation while designing the software,
help improve the understandability of software, speeding up
the programming process by helping locate the bugs easily,
and minimize code duplication [19]-[20]. It becomes very
clear that code clones largely effect the SPL quality which
then adversely effects the factors affecting quality of software
products, resulting in deterioration of performance of software
and bugs/errors in software which increase cost due to
ineffective maintainability. Various parameters for
assessment of software product quality [21] particularly
Maintainability are: Changeability, Testability, Stability,
Analyzability and Maintainability Conformance. In such a
case, it becomes imminent to utilize Quality Models as we
know that they have become a de-facto and widely acceptable
means to describe and manage the quality of software. There
are a total of five methods which are used for quantifying
software’s maintainability [22]-[24]. They are: Hierarchal
multi-dimensional assessment model: views software
maintainability as hierarchy of source code elements,
polynomial regression model: utilizes regression analysis to
determine the association between software maintainability
and metrics, aggregate complexity measure: analyzes
maintainability of software as a function of its entropy,
principal Component Analysis: is a technique that uses
statistics to decrease co-linearity between common
complexity metrics to identify and decreases the total number
of components used to form the regression model, factor
Analysis: is a statistical technique. In this technique the
metrics are orthogonal zed so that they become unobservable
factors, which are thereafter used for modeling the system
maintainability. Even though there are many other quality
models which are capable of quantifying maintainability
aspect of software’s development but all of them obviously
lack the capability of assessing and establishing the
relationship between refactored code and SPL maintainability
[25]-[26].We have particularly chosen the quality factor of
maintainability for software because it is one of the most
crucial factors and in the long run the code clones in the source
code inevitably affect the maintenance of the software [27]-
[29]. Consequently, we pitch a model which would firstly
analyze the impact of code clones on SPL maintainability and
then after the refactoring has been performed, it would analyze

34

the relationship and impact of altered code on the SPL
maintainability, which will help us to draw our conclusion
[30].

The word smell indicates some in depth issues in the software
either at code level or design level. Code smell indicates the
violation of fundamentals of developing a software that
results in decreased quality of code. It is different from an
error or bug. In other words, it is a clue that indicates
something might get wrong or may lead towards negative
consequences, and affect the software maintenance and
evolution. A composite code or design smell is derived from
one code smell that is connected with other code smell [22].
Categorizing a piece of code as code smell or not is subjective
in nature and depends on different parameters like: language
used for development, developers and development
methodology [22]. Error! Reference source not found.
shows some common code smells.

Code Smells

ool s Faatre | [Shortgun Long Dumte‘ Data Long ‘ Rafuuse “le:vaass
parametr st

dass surgery metfiod coe dumps requast
ftract Move Move || e | | Eractelas ||| Brait LD Presenve nling
o class * class W ass e Parametric | [*| whok dass
; y Manve clasg object object
affact fove Extrart
. Extract nire Praserve
o subdlass fiehd . # liteiface patigd | | Pt | L L Pushiown | | Collapse
i hierarehy
Replace Exdract Mave Form | [romuampe || || objet fed erathy
| data valug method method ||| temgle | o pathod Praserva
Extrat -~ method ' \Dvuh:\[et ITE ln:p[eae
| nterace o Riplace method ! paranater || " er_tt;‘rc
I3 . 2 wit
inlicat mowith with valug
uplcate temp wi Deegeton
*| objact quary -
dita Ml

Decompes
H o tion
abject

A

Evfract

Intro,
Parameter
ab.

Replaca
constructor
with factory

Fig 1. Code Smells

In Fig 1 there are some code smells are visualized and also
there are some treatments to remove code smells from the
code. As it can be seen that the problem of God Class can be
removed with the help of extract class, extract sub class,
extract interface, replace data value and duplicate object data.
Same is the case for all the code smell types seen in 1% column
and techniques to remove these smells in 2™ column. Code
smells and refactoring are associated, since refactoring is
crucial for removal of code smells by improving quality of
code in terms of clarity, comprehension and simplicity. Also,
if refactoring process is not followed properly, then it may
produce new code smells and degrade the quality
consequently. Together, these both impact the software
quality. Developing quality software is very essential, but
retaining or increasing the quality of software in maintenance
is equally important. As code smells results in quality issues
like high coupling, low cohesion, problems of encapsulation
which effects maintenance and design decisions.

The remaining paper is divided into following sections:
Section 2 presents a literature review related to Software
Product Lines, Refactoring, Code Cloning and a few Quality

Models. The format we adopted for SLR, along with RQs,
identification of related work, selection criteria, quality
assessment, data extraction, and execution are described in
Section 3. Section 4 demonstrates the motivation of this work
performed. The findings and the proposed model, where
relationship is established between refactoring and code
smell on maintainability is discussed in Section 5. In Section
6 the main threats to validity of our study are discussed.
Finally, we will conclude our findings and discuss possible
future work in section 7.

D. Simon et al highlighted the importance of Software
Product Lines (SPL) in managing large-scale software
development across the industry. They argued that the
advantages of SPL over traditional methods have
significantly reshaped the perspectives of software
companies, motivating them to adopt SPL practices even for
their legacy products. In their study, the authors introduced a
lightweight iterative process aimed at facilitating the gradual
integration of product line principles into existing systems by
applying feature analysis to legacy software. However, their
approach deliberately avoids architectural reconstruction of
legacy systems, which, although potentially beneficial, would
result in higher costs.

R. Mitschke et al state that the main aim of SPLs is to promote
reusability and the evolutionary process of common features
to multiple products. To achieve this traceability is a
necessity and therefore the authors have provided a proposal
that each version of an artifact must be associated with a
specific feature version and the dependence of the feature
should also be managed explicitly. However, there is a big
challenge which is faced by development team when
developing SPL and that is to allow controlled evolution of
SPLs.

J. Bosch et al elucidate that the Software Product Line (SPL)
approach enhances software reusability while reducing
development costs. This paradigm enables the sharing of
architecture and reusable components across multiple
products within a family. However, the authors emphasized
that the evolution of SPLs is considerably more complex than
that of traditional software development. This complexity
arises from the continuous emergence of new and sometimes
conflicting requirements, both from existing products within
the SPL and from newly integrated ones. As these
requirements grow and change, the number of features
expands, ultimately increasing the overall complexity of the
product line.

Gacek. C et al discussed that due to large members of SPLs
it is imminent that they should support the description of SPL
as a whole and also the instances of individual products
derived from the product lines. They outlined that there are
scalability issues in SPL approach and issues arise when
combining and supporting various techniques which should
be addressed and catered for properly and efficiently.

S. Apel et al discusses that Feature Oriented Software
Development is a combo of differing ideas, methods, tools
and techniques and not just a single development method.

35

They state that it is a characteristic of product which is used
for distinguishing software from a family of related software.
The authors have presented an overview of Feature Oriented
Software Development in their work and they have
summarized various works done in the approach of Feature
Oriented Software Development and have established
relationships between different approaches of Feature
Oriented Software Development

C. Kastner et al carried out an empirical study on Feature-
Oriented Software Product Lines with a focus on code
cloning. Their findings revealed that, although the Feature-
Oriented Programming paradigm is intended to mitigate the
cloning issues commonly found in Object-Oriented
approaches, certain limitations result in a considerable
presence of code clones within feature-oriented SPLs. Most
of these clones are directly linked to feature-oriented
programming itself. While refactoring techniques can be
applied to eliminate such clones and improve the quality of
the product line, the underlying factors that give rise to code
cloning remain difficult to quantify, making it challenging to
address them proactively

S. Schulze has primarily focused on code cloning analysis
and their removal and on the reasons due to which code
cloning occurs. He has also proposed a refactoring technique
for preserving the variant nature of compositional SPL, in
order to aid in removal of code clones. He concluded that
although there is a prevalent problem of code clones in SPLs,
the degree of harm that these clones cause in SPLs has not
been accurately realized.

S. Thummalapenta et al have proposed in the study they
published, an automatic approach for categorization of the
evolution of code clone segments. Their study also attempts
to inquire the reason due to which code clones continue to
consistently propagate or evolve independently.

Heitlager argued that the effort required to maintain a
software system is directly proportional to the quality of its
source code. Furthermore, he noted that despite the extensive
body of literature, no definitive methods exist for quantifying
software metrics that can reliably assess software quality

G. Aldekon et al have used an SPL case study for measuring
the maintainability index of each feature of the software
developed using that particular SPL. The have also discussed
ways of improving feature maintainability index and
optimization of maintainability index for making design
decision that will enhance global maintainability.

O. Panchenko et al have proposed the research of matric
based quality indicators in order for assessing the most
significant maintainability characteristics of software. The
model used for quality was obtained from the goal
questionnaire metric approach. The literature research was
followed by expansion of quality model using standard
metrics also some specially defined metrics. A few selective
were validated by authors to foretell maintainability of
software through experiments. They concluded with a note
stating that metrics are very accurate indicators for

assessment of maintainability of a software. And it isn’t
necessary for all metrics to result either and still it is possible
to describe the various aspects of maintainability using
indicating metrics.

D. Coleman et al discussed how automated software
maintainability can be used for guiding the process of
software related decision making. They also applied, to 11
industrial software systems, metrics-based software
maintainability models and used the results produced to
improve the fact-finding method and selection of processes.

T. Thumm et al proposed a method to preserve the variants
in SPLs so that the validity of all SPLs can be ensured after
the refactoring process. The authors also presented the
generalizability of this method for the annotative SPLs.

M. Kuhlemann et al introduced the concept of Refactoring
Feature Modules of RFMs which basically provide extension
through refactoring to feature modules. The study also
concluded that RFMs decrease the number of
incompatibilities and facilitate the reusability of modules.
RFM also reshapes the program structure, which are
composed of feature modules, automatically. To facilitate the
decomposition and reusability of features and refactoring in
RFMs a tool by the name of VAMPIRE is used. He argued
that the effort required to maintain a software system is
directly proportional to the quality of its source code.
Furthermore, he noted that despite the extensive body of
literature, no definitive methods exist for quantifying
software metrics that can reliably assess software quality

Bashir et al implemented the MOMOOD quality model
suggested by Rizvi et al. [13]. The model defines the formula
for maintainability, which takes understandability and
modifiability as arguments. The authors do not state how the
metrics required for maintainability assessment were
measured.

Wijayanayake et al worked on sub characteristics of
maintainability. They measured the analyzability,
changeability, resource utilization and time behavior for each
participant in their experiment doing the refactoring. They
also calculated the maintainability index, WMC, CBO, DIT,
and LOC (see Tablel.) for refactored code and code without
refactoring.

Mehta et al focused on the maintainability index. The authors
proposed an approach for the improvement of software
quality attributes by elimination of relevant code smells from
the source code of observed software project. To analyze the
effectiveness of this, work the Maintainability Index
(measured by the JHawk tool) and Relative logical
complexity (measured by the Eclipse Metrics plug-in) are
measured. According to the authors, the combination of
maintainability index and relative logical complexity does
better at estimating the maintainability of a software system
than the maintainability index itself.

36

Sz"oke et al measured the refactoring impact on the software
projects by the Columbus QM probabilistic software
maintainability model proposed by Bakota et al. [30]. Quality
characteristics mentioned in the ISO/IEC 25010 standard, are
the basis of this model. The maintainability of the software
project was measured by a tool named Source meter,
developed by the authors of this work.

Reis et al reviewed 83 primary studies, showing that the most
common detection approaches were search-based (30.1%)
and metric-based (24.1%). The most studied code smells
were God Class (51.8%), Feature Envy (33.7%), and Long
Method (26.5%); only about 20% of studies incorporated
visualization to support detection.

Zakeri-Nasrabadi et al analyzed 45 existing datasets and
revealed critical limitations: datasets often suffer from
imbalance, lack of severity levels, and a strong bias toward
Java, with only commonly addressed smells like God Class,
Long Method, and Feature Envy covered; several smells from
Fowler & Beck’s catalog remain unsupported.

Ali et al conducted an SLR highlighting evolving techniques
in code smell detection and refactoring. They observed a shift
from classic object-oriented paradigms toward approaches
tailored for cloud, web, and mobile applications, underlining
a growing need for automated, efficient detection and
refactoring methods.

Lacerda et. al in a tertiary SLR explored relationships
between code smells, detection approaches, refactoring tools,
and quality impacts. It reported that refactoring tends to
improve quality more effectively than merely detecting
smells, mapped the top smells to their detection and
refactoring strategies, and spotlighted 13 open challenges and
unanswered questions in the field.

Recent 2025 studies in code smell detection have shown a
remarkable shift toward transformer-based models, nuanced
code representations, and domain-specific tools. Ali, Rizvi,
and Adil introduced a Transformer-based approach for code
smell detection, demonstrating how these models can
significantly enhance detection accuracy by learning deep
contextual features from source code.

In a complementary effort, researchers examined how code
representation techniques including tree-based, token-based,
and embedding formats affect machine learning detection of
the God Class smell; their findings showed marked
improvements in Fi-scores on the MLCQ dataset, paving the
way for intelligent IDE plugins [31]

Parallelly, the EnseSmells framework, combining structural
features with pre-trained language models, achieved 5.98%
to 28.26% detection improvements across multiple smell
types, underscoring the benefit of multi-faceted feature
fusion [32]

Expanding detection beyond code, Oztas et al. (2025) tackled
inline code comment smells using both augmented datasets
and classifier models (notably Random Forest yielding 69%
accuracy), providing a solid baseline for future comment-
quality tools [33]

Addressing ML-specific project challenges, MLScent
emerged as a novel static-analysis tool detecting anti-patterns
and smells in ML codebases, including frameworks like
TensorFlow, PyTorch, and scikit-learn—elevating code
quality in data science projects [34].

An innovative study on test smells employed small open-
source LLMs in multi-agent workflows, achieving near-
guaranteed detection (96%) and enabling real-world
refactoring; notably, pull requests generated via these
workflows were accepted in open-source repositories,
showcasing practical applicability [35].

II. METHODOLOGY

Code Smells Taxonomy

The term “code smells” was first introduced by Fowler and
Beck in 1999, who proposed a list of 22 distinct code
anomalies, often referred to as code fragrances. These can
broadly be classified into two categories: dependence-based
and similarity-based smells. At the class level, code smells
are further categorized as those within a class and those that
extend beyond a class.

In contrast, a code clone is a duplicate or near-duplicate
fragment of code, often introduced through copy paste reuse.
Clones are commonly classified into four types, ranging from
exact copies (Type-1) to semantically similar fragments with
different syntax (Type-4).

Code Smell Detection Techniques

Over the years, a variety of techniques have been developed
to identify different types of code smells. These detection
approaches rely on either raw source code or compiled code
representations, which are analyzed for structural or semantic
characteristics. Software metrics whether object-oriented or
otherwise are commonly employed to correlate measurable
properties of code with known code smell patterns. The
required metric values are typically obtained through third-
party tools or via static source code analysis.

Detection tools then process these metrics to determine
whether certain code-smell conditions are met, providing the
identified smells as output. However, static analysis alone
cannot capture all instances of code smells, as certain issues
emerge only at runtime (e.g., due to dynamic dispatch). To
address such limitations, some approaches adopt hybrid
detection techniques that combine static and dynamic
analysis. Moreover, historical information about software
evolution has also been leveraged to enhance the accuracy of
smell detection.

Mapping study Process

To summarize the current research of assessing quality
models for analysis of impact of code refactoring on software
product line maintainability, we have performed a systematic
literature review (SLR) [11], [36], [37]. SLR guidelines. Our
review was performed in five stages (Error! Reference
source not found.): Defining goal and Research Questions,
Identification of Relevant Research Articles, Selection
criteria, Quality assessment and then Data extraction at the
end.

37

Data
Extraction

Selection
criteria

Relevant
Research
Articles

Quality
Assessment

Defining goal
and Research
Questions

Fig. 2. SLR Design

Research questions:

RQ1: Are there any established software metrics
available for the analyzing the impact of Code
Refactoring on SPL Maintainability?

A software metric can be used to measure the code cloning
problem as code cloning has an impact on maintainability of
software quality and causes an increase in amount of work
required. Multiple software metrics are used to measure
different aspects of the system, before and after refactoring

RQ2: What are the Top ten refactoring techniques and
their effects on the quality attributes?

Practically, it's difficult for the developers to spot refactoring
opportunities, that is; to work out which sort of refactoring
should be applied to mitigate a code smell. Studies reported
that the association between refactoring and smells isn't a 1
to 1 relationship. This article presents top studies which have
been more cited on refactoring techniques. The techniques
which are more frequently used are the extraction techniques
(method, variable, class) [6].

RQ3: What refactoring tools have been identified in
literature?

Refactoring is performed by using some tools. It becomes
difficult for developer to select the appropriate refracting
tool. For this purpose, intense literature surveys are
conducted by the developers. To overcome this issue, we
have presented a precise survey which helps developer to
select the best tool.

RQ4: What is the impact of refactoring and code smell on
maintainability of software Product line?

To understand the impact of refactoring and code smells on
maintainability, it is important to understand about the
associations between refactoring and code with quality
attributes and also available refactoring techniques used on
quality attributes. Code smells and refactoring are associated,
since refactoring is crucial for removal of code smells by
improving quality of code in terms of clarity, comprehension
and simplicity. Also, if refactoring process is not followed
properly, then it may produce new code smells and degrade
the quality consequently.

III. RESULT AND DISCUSSION
Refactoring on SPL Maintainability?

A software metric can be used to measure the code cloning
problem as code cloning has an impact on maintainability of
software quality and causes an increase in amount of work

required. Multiple software metrics are used to measure
different aspects of the system, before and after refactoring.
There are several techniques for finding code clones, some
utilize tokens, strings and some use parse trees. Which
technique is used depends on the goal of measurement.

Existing studies have not yet succeeded in quantifying the
underlying causes of code clones in Feature-Oriented
Programming, nor have they identified the factors leading to
code clones in Delta-Oriented methodologies. Nevertheless,
it is evident that code cloning adversely impacts the quality
of Software Product Lines (SPLs), and these effects, in turn,
propagate to the quality of the software products derived from
such SPLs. The consequences of code cloning include;
Downgraded efficiency, Creeping of bugs and errors into the
software, Deteriorated performance, and Increase in cost due
to poor maintainability.

RQ2: What are the Top ten refactoring techniques and
their effects on the quality attributes?

We have selected top ten studies which have been more cited
on refactoring technique. The techniques which are more
frequently used are the extraction techniques (method,
variable, class). Extract Class is used to detect smells like
applied Duplicated Clones, Divergent Change, Data Clumps
and God Class. Same refactoring can be used for detection of
more than one smells, by taking context under consideration.

Extract Method, Move Method and Extract Class are the most
commonly used than other refactoring techniques. The high
interest of researchers in these techniques indicated the
significant importance of these in the software industry.
Extract Superclass technique is infrequently used. Although
Add Parameter, Rename Field, Inline Temp, and Rename
Method are commonly used techniques. But we have not
found any studies which report opportunities and applications
of these techniques. Instead, Rename Method is often used as
automatic refactoring technique.

Practically, it's difficult for the developers to spot refactoring
opportunities, that is, to work out which sort of refactoring
should be applied to mitigate a code smell. Studies reported
that the association between refactoring and smells isn't a 1
to 1 relationship.

Effects of Refactoring on the Quality Attributes:

Literature reports a process of refactoring for analyzing the
effect on software quality attributes. Refactoring can be
performed by following some basic steps. These steps are: (i)
identification of suspected pieces of code that contains bad
smells, (ii) determine refactoring methods that can be applied
on the suspected code, (iii) selected refactoring method must
not compromise on the software behavior, (iv) perform
refactoring at required places, (v) examine the impact of
refactoring on the software quality attributes, and finally (vi)
perform comparison of code quality before and after
refactoring in order to maintain quality.

38

Many studies have been performed to analyze the effect of
various refactoring techniques (Move Method, Extract Class,
and Extract Method) on the quality of code. It is reported that
Extract Class has positive impact on some internal quality
attributes such as: cohesion, inheritance, size and also have
negative effect on the internal attributes like coupling and
complexity. Extract Subclass impacts negatively on
complexity and showed inconsistent impact on coupling and
cohesion.

Inline Class method has negative impact on inheritance, and
positive impact on cohesion, coupling, and complexity.

Extract Method affect cohesion, complexity, and size
positively, and remains neutral on inheritance and coupling.
Move Method has an opposite effect on complexity and
coupling, and positive impact on cohesion. The Move Field
refactoring technique effects cohesion in positive manners
while coupling in negative. Complexity is positively and
coupling and cohesion are negatively impacted in
Encapsulate Field method. Replace Data Value with Object
shows positive affects for cohesion and inverse impact for
coupling. Lastly, coupling impacts positively by use of
Replace Method with Method Object..

Based on the above research it can be concluded that the
positive and negative impacts of refactoring on different
quality attributes, helps the practitioners to select appropriate
refactoring technique for elimination of bad smells of codes
along with improvement of quality attributes.

RQ3: What refactoring tools have been identified in
literature?

Refactoring is performed by using some tools. To answer this
research question we explored different studies on tools of
refactoring and among these studies different tools presented.

1) JDeodorant is an Eclipse plug-in that uses metrics and
ASTS to automatically detect bad smells in Java code like
Type Check, Switch Statement, Feature Envy, Long Method
and God class. This tool is frequently used in studies to help
the users to perform refactoring. The study analyzed that
JDeodorant (by using default configuration) detects more bad
smells as compared to PMD and inFusion tools. However,
JDeodorant in detection of smells like: Long Method, God
class and 8 Abstract Syntax Tree, has achieved low results in
terms of precision and recall (about 14%). It is also observed
that JDeodorant performs smell detection along with other
applications of refactoring. This is the strength of this tool,
which made it very popular even having some limitations

2) TrueRefactor is an automatic tool of refactoring. It uses
Genetic Algorithm for selecting the optimal sequence which
eliminates maximum code smells from the source code. For
identification of code smells, source code is first parsed. Then
structure of the software is shown by creating control flow
graphs. For classification of code to explicit code smells,
different metrics are calculated. An example program is
discussed which contains artificially inserted code smells in

order to analyze the effectiveness of TrueRefactor. It
measures (i) the no. of distinct code smells over specified
iterations, and (ii) different quality attributes. Comparison
between initial artifact and final revealed that this tool
successfully eliminated significant number of bad smells.
And also maintained important quality attributes with
improvement. This tool can perform refactoring very well,
but instead of this, its frequent current use is in the area of
UML modification. Both JDeodorant and TrueRefactor, are
the frequently cited and discussed in literature.

3) Eclipse is a popular tool used to support developers in
process of automation of refactoring. The process starts with
verification of prerequisites, then in depth analysis is
performed and finally code is rewritten with the help of
guidelines, with no compromise on the structure of AST. The
benefit of using Eclipse is to make sure the application of
refactoring. As Eclipse supports about twenty refactoring
techniques, so it’s up to developer to detect code smells and
select appropriate refactoring technique. The authors have
reported that on the basis of developer’s habits, it is not an
unimportant process. Now tools are considering these factors
and recommending the developers different refactoring
techniques.

4) IntelliJ IDEA supports about 40 refactoring techniques. It
uses a lexical and syntax parser, namely Program Source
Interface, to transform the source code into Abstract Syntax
Tree. The parser validates the source code. After conversion,
for verification of scope of changes, indentation adjustments
in the code, insertion of blank-lines, change of qualifiers
names and inclusion of libraries in the source code is the
responsibility of Formatter. However, this tool uses built in
Domain-Specific-Language in order to detect fragments in
the Program Source Interface by using a distinct notation.

5) Wrangler is the tool used for refactoring of clones. It is
implemented in Erlang and integrated with Eclipse and
Emacs, with the help of ErlIDE plugin. For the programs of
Erlang, this tool provides interactive refactoring. Wrangler
supports different types of refactoring, detection of code
smells, and mainly detection and elimination of code clones.

RQ4: What is the impact of refactoring and code smell on
maintainability of software Product line?

To understand the impact of refactoring and code smells on
maintainability, it is important to understand about the
associations between refactoring and code with quality
attributes and also available refactoring techniques used on
quality attributes. First the process of refactoring is explained
through a flow chart in Fig 3.

39

Planning of
Refactoring
Plan to Improve
Code

Plan Evaluation

Refactoring
Process

Weak Part of
Program

Functional
Evaluation

[

Original Source
Code

Detection of
bad smell

Refactoring
validation

Y

) Refactoring
Bad Smell I- Methods
N Applied
Analysis

Improved Source
Code

Fig. 3. Refactoring Process

Association between refactoring and the code external
and internal quality attribute:

Different software quality models ISO/IEC 9126, FURPS,
and McCalls Factor Model are reported in the literature and
cited in the studies [[17], [38], [39]. Every model consists of
different software quality attributes which are common in
different quality models. These quality attributes are
classified as internal and external attributes. The examples of
internal attributes are coupling, complexity, cohesion,
inheritance and size, while the maintainability, reusability,
and understandability are the frequently studied external
quality attributes. By using the combination of internal
quality attributes (cohesion, inheritance, coupling, etc.)
external attributes can be quantified. Thus, it is important to
analyze the effect of refactoring on a single attribute rather
than the combination of internal quality attributes. But the
researchers conducted more studies to analyze the impact of
refactoring on the external quality attributes as the experts are
more interested in these attributes. The next most investigated
issue of refactoring is the selection of code smells to be
corrected based on its relative importance. Also, some studies
identified and explored the relation of code smells type with
the quality attributes. The type of identified relationship is
different from author to author. Many code smells mentioned
by Fowler et alcan affect multiple quality attributes, like
maintainability, understandability and complexity, at the
same time. These quality attributes have major influence on
the software maintenance costs. Hence, the code smells
which are related with these quality attributes will be given a
highest priority for elimination from the software.

Similarly, some studies investigated that refactoring may
produce negative effect on different software quality
attributes. Doing changes in the code that doesn’t need to be
refactor, may result in low quality of the code instead of
improvement. Therefore, refactoring doesn’t guarantee the
improvement of all software quality attributes.

Maintenance is one of the most essential features for software
products. So far, we have seen quite a lot of researches about
code smells, metrics, tools and techniques to remove these
smells from Software Products line. There are many
researches available regarding code metrics, techniques and
tools. With the help of this review, we are able to identify that
different tools are showing different results in different cases.
They are incompatible for some scenarios. This systematic
literature review helps us identify tools and techniques to
minimize code smells. SPL (software Product Line) helps us
build software products using software engineering methods,
techniques, metrics and tools using collection of similar
software systems from software assets using common
production lines. This is one of the best approaches to reuse
software products. It reduces cost and effort by reusing
existing features and managing the variability between the
different products with respect of particular constraints. With
the help of this technique, we can reuse core assets of a
company working on software product line. Code smells are
the main issue when it comes to reusing of assets. To
overcome the above-mentioned problem, we can move
towards refactoring that helps to improve the internal
structure of source code without disturbing the external
behavior of the software product. Purpose of refactoring is to
reuse software without the issue of code smells also it
increases maintainability and helps improve quality of
software product. It is basically restructuring the code by
applying basic refactoring keeping in mind not to disturb
internal structure of code so that it has no impact on the
external behavior of software. There are so many code
refactoring techniques available in literature. Ten most
important techniques are described in this review article;
Extract Class, Extract Subclass, Extract Method, Inline Class,
Move Method, Move Field, Encapsulation Field Method,
Replace Field, Replace Method, Rename Method. By
removing code smells using refactoring we take source code
having any sort of issues as an Input and produce a good
quality code as an output. This output code can be reused in
future software product development. We can identify code
smell with the help of these refactoring techniques. We can
also restructure code in order to remove code smell.

Software Product Line (SPL) refers to a collection of related
software systems that share common features while also
supporting variability, with the primary objective of
maximizing reusability [20]. The SPL paradigm enhances
software productivity and quality by exploiting similarities
among systems and managing them within a reuse-driven
framework. Inspired by industrial product line practices, SPL
aims to reduce development costs and effort while improving
overall efficiency. In software engineering, code smells are
widely recognized as indicators of poor design choices or
undesirable code characteristics. Similar to traditional
systems, SPL artifacts can also exhibit various code
anomalies. If these anomalies, or code smells, are not
systematically addressed, the maintainability and quality of
the SPL may deteriorate over time, particularly as the system
evolves. Moreover, anomalies at the SPL model level can
propagate across derived products, compounding the
problem. While code smells are well-studied in conventional
single-system development, their presence in SPLs represents

40

a relatively new area of research. For instance, introduced the
notion of “Variability Smells” specific to SPLs. Several
refactoring tools have been developed to address such issues,
including J-Deodorant, True Refactor, Eclipse
Refactoring, IntelliJ IDEA, and Wrangler. This review
highlights how practitioners can evaluate software
maintainability by mapping widely used metrics to the tools
that compute them. It also provides guidance for researchers
and developers aiming to design or extend tools for emerging
programming languages. Furthermore, the review identifies
tools that support the calculation of popular maintenance
metrics, outlines their language support, and points to open-
source solutions that can serve as practical references for
developing equivalent tools for diverse programming
environments.

Threats to validity

This section is about the threats and some mitigations about
the threats. The search string should be very well defined to
get the precise results. First main issue in this SLR type
research is the use of keywords to find the relevant topics. We
have tried to select the best possible synonyms to get the max
output. The chosen databases for the research is also a major
concern. There is quite a big change that there are many
relevant topics in other electronic repositories as well. Which
is also a threat to validity to mitigate this threat we performed
snowballing, where the citations of the selected papers are
verified through a list of references to find other related
studies not included initially on our search. All the topics
selected for this SLR are written in English language, that
doesn’t mean there is no relevant topic in other languages.as
we know the primary venue of scientific research is written
in English language. So, we assume that our selected
literature is enough to conclude a result. An investigation can
be rehashed with similar outcomes. Our research can easily
recreate following the means depicted and using the search
strings.

IV. CONCLUSION

After the text edit has been completed, the paper is ready for
the template. Duplicate the template file by using the Save As
command, and use the naming convention prescribed by your
conference for the name of your paper. In this newly created
file, highlight all of the contents and import your prepared text
file. You are now ready to style your paper; use the scroll
down window on the left of the MS Word Formatting toolbar.

With the rapid expansion of Software Product Lines (SPLs),
a significant number of code clones inevitably find their way
into the source code. This not only leads to performance
degradation but also increases the likelihood of bugs, errors,
and higher maintenance demands. Code cloning is
particularly prevalent in SPL methodology due to its
emphasis on reusability. However, excessive cloning
complicates maintenance efforts and directly undermines
overall software quality.

To address this challenge, we have proposed a visualization-
based approach to illustrate the effects of code cloning and
the role of refactoring in enhancing SPL maintainability.

One limitation of this study is that the search strategy was
limited to five databases (IEEE Xplore, ACM Digital Library,
SpringerLink, ScienceDirect, and Google Scholar). Although
these sources cover a substantial portion of the software
engineering literature, additional databases such as Scopus
and Web of Science may yield further relevant studies.
Incorporating them would require re-executing the entire
review protocol, which was beyond the scope of the current
manuscript. We consider this an important extension for
future work.

Our findings aim to provide researchers with deeper insights
into effective practices and tools for mitigating code smells,
thereby improving quality. Furthermore, we recommend
future studies to explore the real-world objectives of
refactoring as employed by industry professionals, assess its
measurable impact on quality, and advance the development
of intelligent refactoring tools capable of tracking and
evaluating refactoring activities and their benefits over time.

ACKNOWLEDGMENT

The authors would like to thank the Department of
Software Engineering, NUST/NUML, for providing support
and resources during the course of this research.

REFERENCES

[1] W. LOWE and T. PANAS, “RAPID CONSTRUCTION OF
SOFTWARE COMPREHENSION TOOLS,” International
Journal of Software Engineering and Knowledge Engineering,

vol. 15, mno. 06, pp. 995-1025, Dec. 2005, doi:
10.1142/S0218194005002622.
[2] A. Telea and L. Voinea, “Visual software analytics for the build

optimization of large-scale software systems,” Comput Stat, vol.
26, no. 4, pp. 635-654, Dec. 2011, doi: 10.1007/s00180-011-0248-
2

[3] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada,
“Software Design Smell Detection: a systematic mapping study,”
Software Quality Journal, vol. 27, no. 3, pp. 1069-1148, Sep.
2019, doi: 10.1007/s11219-018-9424-8.

[4] P. Hegedis, 1. Kadar, R. Ferenc, and T. Gyimoéthy, “Empirical
evaluation of software maintainability based on a manually
validated refactoring dataset,” Inf Softw Technol, vol. 95, pp. 313—
327, Mar. 2018, doi: 10.1016/j.infsof.2017.11.012.

[5] M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-
Tamimi, “Code Smells Analysis Mechanisms, Detection Issues,
and Effect on Software Maintainability,” in 2019 IEEE Jordan
International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), IEEE, Apr. 2019, pp. 663—666.
doi: 10.1109/JEEIT.2019.8717457.

[6] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A.
De Lucia, “On the diffuseness and the impact on maintainability
of code smells,” in Proceedings of the 40th International
Conference on Software Engineering, New York, NY, USA:
ACM, May 2018, pp. 482—482. doi: 10.1145/3180155.3182532.

[7] M. Misbhauddin and M. Alshayeb, “UML model refactoring: a
systematic literature review,” Empir Softw Eng, vol. 20, no. 1, pp.
206-251, Feb. 2015, doi: 10.1007/s10664-013-9283-7.

[8] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T.
Dyba, “Quantifying the Effect of Code Smells on Maintenance
Effort,” [EEE Transactions on Software Engineering, vol. 39, no.
8, pp. 1144-1156, Aug. 2013, doi: 10.1109/TSE.2012.89.

[9] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell

relations on software maintainability: An empirical study,” in 2013

35th International Conference on Software Engineering (ICSE),

IEEE, May 2013, pp. 682—691. doi: 10.1109/ICSE.2013.6606614.

J. Erickson, Impala Performance Update: Now Reaching DBMS-

Class Speed. Cloudera Inc, 2014.

P. Kouros, T. Chaikalis, E.-M. Arvanitou, A. Chatzigeorgiou, A.

Ampatzoglou, and T. Amanatidis, “JCaliper Search-based

Technical Debt Management,” in Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing, New York, NY,

[10]

[11]

41

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(23]

[26]

[27]

(28]

USA: ACM, Apr. doi:
10.1145/3297280.3297448.

Y. Mehta, P. Singh, and A. Sureka, “Analyzing Code Smell
Removal Sequences for Enhanced Software Maintainability,” in
2018 Conference on Information and Communication Technology
(CICT), IEEE, Oct. 2018, pp. 1-6. doi:
10.1109/INFOCOMTECH.2018.8722418.

O. Poy, M. A. Moraga, F. Garcia, and C. Calero, “Impact on
energy consumption of design patterns, code smells and
refactoring techniques: A systematic mapping study,” Journal of
Systems and Software, vol. 222, p. 112303, Apr. 2025, doi:
10.1016/j.jss.2024.112303.

D. Ogenrwot, J. Nakatumba-Nabende, J. Businge, and M. R. V.
Chaudron, “Empirical Investigation of the Relationship Between
Design Smells and Role Stereotypes,” Jun. 2024.

X. Han et al., “Code Smells Detection via Modern Code Review:
A Study of the OpenStack and Qt Communities,” Cornell
University, May 2022, [Online]. Available:
http://arxiv.org/abs/2205.07535

R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for
Refactoring,” in Proceedings of the Third International
Symposium on Women in Computing and Informatics, New York,
NY, USA: ACM, Aug. 2015 pp. 228-234. doi:
10.1145/2791405.2791463.

S. Vidal, 1. berra, S. Zulliani, C. Marcos, and J. A. D. Pace,
“Assessing the Refactoring of Brain Methods,” ACM Transactions
on Software Engineering and Methodology, vol. 27, no. 1, pp. 1-
43, Jan. 2018, doi: 10.1145/3191314.

Y. Mehta, P. Singh, and A. Sureka, “Analyzing Code Smell
Removal Sequences for Enhanced Software Maintainability,” in
2018 Conference on Information and Communication Technology
(CICT), IEEE, Oct. 2018, pp. 1-6. doi:
10.1109/INFOCOMTECH.2018.8722418.

R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for
Refactoring,” in Proceedings of the Third International
Symposium on Women in Computing and Informatics, New York,
NY, USA: ACM, Aug. 2015, pp. 228-234. doi:
10.1145/2791405.2791463.

0. Poy, M. A. Moraga, F. Garcia, and C. Calero, “Impact on
energy consumption of design patterns, code smells and
refactoring techniques: A systematic mapping study,” Journal of
Systems and Software, vol. 222, p. 112303, Apr. 2025, doi:
10.1016/j.jss.2024.112303.

J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro,
and C. Anslow, “Code Smells Detection and Visualization: A
Systematic Literature Review,” Archives of Computational
Methods in Engineering, vol. 29, no. 1, pp. 47-94, Jan. 2022, doi:
10.1007/s11831-021-09566-x.

K. Borowski, B. Balis, and T. Orzechowski, “Semantic Code
Graph An Information Model to Facilitate Software
Comprehension,” IEEE Access, vol. 12, pp. 27279-27310, 2024,
doi: 10.1109/ACCESS.2024.3351845.

N. R. Ravari, R. Latih, and A. Mohd Zin, “Multi-Language
Program Understanding Tool,” Int J Adv Sci Eng Inf Technol, vol.
13, no. 4, pp. 1554-1560, Aug. 2023, doi:
10.18517/ijaseit.13.4.18019.

S. H. S. Almadi, D. Hooshyar, and R. B. Ahmad, “Bad Smells of
Gang of Four Design Patterns: A Decade Systematic Literature
Review,” Sustainability, vol. 13, no. 18, p. 10256, Sep. 2021, doi:
10.3390/su131810256.

G. Kaur and B. Singh, “Improving the quality of software by
refactoring,” in 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS), IEEE, Jun. 2017, pp.
185-191. doi: 10.1109/ICCONS.2017.8250707.

N. R. Ravari, R. Latih, and A. Mohd Zin, “Multi-Language
Program Understanding Tool,” Int J Adv Sci Eng Inf Technol, vol.
13, no. 4, pp. 1554-1560, Aug. 2023, doi:
10.18517/ijaseit.13.4.18019.

F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A.
De Lucia, “On the diffuseness and the impact on maintainability
of code smells,” in Proceedings of the 40th International
Conference on Software Engineering, New York, NY, USA:
ACM, May 2018, pp. 482-482. doi: 10.1145/3180155.3182532.
A. Rathee and J. K. Chhabra, “Restructuring of Object-Oriented
Software Through Cohesion Improvement Using Frequent Usage
Patterns,” ACM SIGSOFT Software Engineering Notes, vol. 42,
no. 3, pp. 1-8, Sep. 2017, doi: 10.1145/3127360.3127370.

2019, pp. 1721-1730.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

K. Solanki and S. Dalal, “Analysis of Research Trends Towards
Types of Code Clone Detection Techniques,” Indian J Sci Technol,
vol. 16, mno. 7, pp. 468475 Feb. 2023, doi:
10.17485/1JST/v1617.2219.

G. Kaur and B. Singh, “Improving the quality of software by
refactoring,” in 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS), IEEE, Jun. 2017, pp.
185-191. doi: 10.1109/ICCONS.2017.8250707.

D. Shanmugasundaram, P. Arivukkarasu, H. Chen, and H. Cai,
“Deep Learning Representations of Programs: A Systematic
Literature Review,” ACM Comput Surv, vol. 58, no. 5, pp. 1-37,
Apr. 2026, doi: 10.1145/3769008.

E. Jabrayilzade, A. Yurtoglu, and E. Tiiziin, “Taxonomy of inline
code comment smells,” Empir Softw Eng, vol. 29, no. 3, p. 58, May
2024, doi: 10.1007/s10664-023-10425-5.

Md. A. Hossain, J. Jiang, J. Han, M. A. Kabir, J.-G. Schneider, and
C. Liu, “Inferring data model from service interactions for
response generation in service virtualization,” Inf Softw Technol,
vol. 145, p. 106803, May 2022, doi: 10.1016/j.infsof.2021.106803.
B. Zhang et al, “A Comprehensive Evaluation of Parameter-
Efficient Fine-Tuning on Code Smell Detection,” Jun. 2025.

R. Melo et al., “Agentic LMs: Hunting Down Test Smells,” Oct.
2025, doi: 10.1109/MS.2025.3621356.

42

[36]

[37]

[38]

[39]

M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-
Tamimi, “Code Smells Analysis Mechanisms, Detection Issues,
and Effect on Software Maintainability,” in 2019 [EEE Jordan
International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), IEEE, Apr. 2019, pp. 663—666.
doi: 10.1109/JEEIT.2019.8717457.

S.-C. Necula, F. Dumitriu, and V. Greavu-Serban, “A Systematic
Literature Review on Using Natural Language Processing in
Software Requirements Engineering,” Electronics (Basel), vol. 13,
no. 11, p. 2055, May 2024, doi: 10.3390/electronics13112055.

R. Malhotra, A. Chug, and P. Khosla, “Prioritization of Classes for
Refactoring,” in Proceedings of the Third International
Symposium on Women in Computing and Informatics, New York,
NY, USA: ACM, Aug. 2015 pp. 228-234. doi:
10.1145/2791405.2791463.

V. Mehta, S. Bawa, and J. Singh, “WEClustering: word
embeddings based text clustering technique for large datasets,”
Complex & Intelligent Systems, vol. 7, no. 6, pp. 3211-3224, Dec.
2021, doi: 10.1007/s40747-021-00512-9.

	I. Introduction
	II. methodology
	III. result and discussion
	IV. conclusion
	Acknowledgment
	References

