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Abstract — This study presents the development and implementation of an automatic irrigation system based on the Internet of Things
(107) utilizing the Decision Tree algorithm. The system was applied in a hydroponic garden at Institut Shanti Bhuana Bengkayang. It
employs a water level sensor to detect the volume of water, which is then processed using the Decision Tree classification to determine
whether the irrigation valve should be opened or closed. Data collected from the sensor were analyzed both manually and
programmatically to find the optimal threshold for decision-making. The system was integrated with the Blynk platform, allowing real-
time monitoring and control. Testing was conducted over 7 days with 210 data points, and the classification model achieved an accuracy
of 100%. The results indicate that the proposed system effectively automates irrigation, minimizes manual intervention, and provides

a reliable solution for small-scale smart farming applications.
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I. INTRODUCTION

The global agricultural [1] landscape is facing
unprecedented challenges due to rapid population growth [2],
climate change, and decreasing availability of arable land.
Traditional farming practices are increasingly inadequate in
addressing the growing food demand, which is projected to
rise by 70% by 2050 to support an estimated 9.3 billion
people worldwide [3][4] In response to these challenges In
recent years, there have been significant advancements in the
integration of smart technologies for precision farming within
the agricultural domain [5], innovative technologies such as
the Internet of Things (IoT) have emerged as transformative

tools in modern agriculture, offering real-time data
collection, automation, and  precision  farming
capabilities[6][7].
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IoT has great potential and is one of the key areas for
future development of internet services[8]. The evolution of
tecchnology has made it possible to create such integrated
devices that, although limited in computational resources, can
execute relatively complex tasks especially in the open field,
precision agriculture can improve its management and, thus,
its productivity [9][10][11]. loT-based systems have proven
particularly beneficial in controlled environments like
hydroponic gardens, where parameters such as nutrient
levels, temperature, humidity, and water flow require
constant monitoring to ensure optimal plant growth. The
major benefit of this innovation was the capability to
producer and consumer services in real time[12]. These
systems can significantly reduce labor requirements and
improve water-use efficiency, which is especially important
in regions with limited agricultural infrastructure[7]. At
Institut Shanti Bhuana in Bengkayang, the adoption of
hydroponic gardening presents an opportunity to integrate
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such technology into educational and sustainable food
production initiatives.

The incorporation of artificial intelligence [13],
particularly decision tree algorithms [14], further enhances
the effectiveness of loT-based irrigation systems by enabling
automated decision-making [15] based on real-time
environmental data. Decision trees provide a transparent and
interpretable method [16] [17] of evaluating sensor inputs to
determine precise irrigation schedules, helping to minimize
resource waste and ensure consistent crop health[6][18] .

This research focuses on the implementation of an IoT-
based automatic irrigation system using a decision tree
algorithm within a hydroponic setup at Institut Shanti Bhuana
Bengkayang. The aim is to develop a scalable, low-cost, and
efficient solution that contributes to smart agriculture
[19]practices in educational and rural settings.

II. METHODOLOGY

This study used a quantitative research method involving
several stages: identifying the problem, analyzing needs,
designing the system, implementing the prototype, and
evaluating the results.
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Fig 1. Research Flowchart

Fig 1 illustrates the research design flowchart outlines the
step-by-step process followed in the development of the IoT-
based automatic irrigation system using the Decision Tree
algorithm. The process begins with literature review, which
involves gathering and studying references related to IoT-
based irrigation systems and Decision Tree methodologies.
This step also includes field observations and interviews with
members of the Hydroponic UKM at Institut Shanti Bhuana
to better understand existing challenges and requirements.

The needs analysis follows, which defines both functional
and non-functional requirements. This includes determining
the necessary hardware (such as water level sensors,
ESP8266, and micro servos) and software tools (Arduino
IDE, Blynk, and Decision Tree classification logic) needed to
develop the system.
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In this study, the Decision Tree classification model is
implemented directly on the ESP8266 NodeMCU
microcontroller. The algorithm is hard-coded in the Arduino
IDE environment, using threshold-based rules derived from
entropy and information gain calculations. The ESP8266
processes the raw water level sensor readings in real time
without relying on any external server or cloud-based
computation for decision-making. This local processing
approach was chosen to reduce latency, ensure the system can
function even during internet disruptions, and minimize
dependency on third-party platforms. The Blynk application
is used solely for real-time monitoring and manual override
control, while all classification logic and valve actuation
decisions are handled internally by the microcontroller.
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Fig 2. Communication Architecture

Fig 2 illustrates the IoT communication architecture in
this system is designed for direct data exchange between the
ESP8266 microcontroller and the Blynk cloud server via Wi-
Fi. The water level sensor sends readings to the ESP8266
every 5 seconds, which then transmits the data to the Blynk
application for real-time monitoring. Control commands
from the user are also sent through Blynk to the
microcontroller, allowing bidirectional communication. In
the event of temporary network instability, the classification
and valve control processes continue to operate locally on the
ESP8266 to ensure uninterrupted irrigation. Once the
connection is restored, buffered sensor data is transmitted to
synchronize the Blynk dashboard.

Once the requirements are defined, the system design and
planning stage begins. A prototype is developed by
integrating all components into a working model that
represents how the system should function. The design phase
also includes the creation of flowcharts and diagrams to
visualize data flow and system interactions.

This is followed by the implementation and testing phase,
where the prototype is tested in a real environment (the
hydroponic garden). The testing is done over a period of 7
days to gather real-time data and assess the system’s
accuracy, reliability, and responsiveness.

This is followed by the conclusion and recommendation
phase, where the results from system implementation are
analyzed to evaluate whether the objectives of the research
have been achieved. The analysis confirms that the IoT-based



automatic irrigation system successfully responded to real-
time water level data and was able to control irrigation actions
through a micro servo mechanism. By applying the Decision
Tree algorithm, the system was able to classify sensor input
and make appropriate decisions, such as opening or closing
the water valve, with a reported accuracy of 100% during
testing.

Furthermore, the integration with the Blynk application
provided a practical and accessible interface that allowed
users to monitor system activity remotely through
smartphones. This feature significantly reduced the need for
manual observation and enabled users to manage irrigation
more efficiently.

In light of these achievements, several recommendations
are proposed for future system development. First, additional
sensors such as temperature and humidity sensors can be
integrated to support more dynamic decision-making based
on multiple environmental conditions. Second, the system
can be enhanced with a dedicated web-based dashboard to
display historical data, generate visual performance analytics,
and reduce dependency on third-party platforms. Lastly,
notification features through commonly used messaging
applications like WhatsApp or Telegram can be implemented
to improve system accessibility and ensure timely user
responses.

This final stage emphasizes how the system not only
meets its primary objectives but also offers a scalable
foundation for future improvements and broader adoption in
smart farming environments.

The implementation was conducted at the hydroponic
garden of Institut Shanti Bhuana Bengkayang using a smart
irrigation system integrated with an IoT architecture and the
Decision Tree algorithm.

Fig 3. Hardware Prototype

Fig 2 shows the hardware prototype of the IoT-based
automatic irrigation system developed in this study. The
system consists of an ESP8266 NodeMCU microcontroller as
the processing unit, a water level sensor to detect water
volume, and a micro servo motor that functions as an actuator
to control water flow. These components are connected using
jumper wires and mounted inside a transparent plastic
enclosure for visibility and protection. The design reflects a
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compact, low-cost smart irrigation solution that supports real-
time data processing and automated decision-making based
on water level readings.

The software implementation was done using the Arduino
IDE to program the ESP8266 microcontroller, which received
input from the sensor and triggered actuator responses. The
Blynk application was used for real-time monitoring and
remote control of the irrigation system through smartphones.

A similar  implementation  using  ESP-based
microcontrollers and the Blynk platform for real-time
hydroponic monitoring was demonstrated by highlighting the
feasibility and practicality of low-cost smart farming
solutions. The system was capable of displaying water levels
and the status of the valve (open or closed) in real time via the
Blynk dashboard.

For classification, this study used the Decision Tree
algorithm with entropy and information gain calculations to
determine the most effective attribute and threshold for
decision-making. The calculation process was done manually
and validated using Python programming. A dataset of 210
records collected from the system over 7 days was used to
train and evaluate the model.

The experimental results, including system accuracy and
performance, were analyzed based on the correctness of the
classification and the reliability of the irrigation mechanism in
responding to sensor inputs.

III. RESULT AND DISCUSSION

The IoT-based automatic irrigation system was
successfully implemented and tested at the hydroponic garden
of Institut Shanti Bhuana Bengkayang. The system consisted
of a water level sensor connected to an ESP8266 NodeMCU
microcontroller, which processed data and controlled a micro
servo motor that functioned as a valve. The water level
threshold used for classification was 300. If the sensor reading
was <300, the system triggered the servo to open the valve. If
the value was >300, the valve remained closed.

TABLE 1. WATER LEVEL THRESHOLD AND VALVE DECISION LOGIC
Water Level Sensor System
<=300 Open the water valve
>300 Close the water valve

Table I presents the rule-based classification logic used in
the system to determine whether the irrigation valve should be
opened or closed. The decision is based on the water level
sensor readings. If the sensor detects a water level value less
than or equal to 300, the system classifies the condition as
“insufficient water” and automatically opens the valve to
initiate irrigation. Conversely, if the sensor value exceeds 300,
the system interprets the condition as “sufficient water” and
closes the valve to stop irrigation.
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Fig 4. Decision Tree

Fig 3 illustrates the Decision Tree algorithm implemented
in this study for classifying irrigation decisions based on water
level sensor readings. The root node represents the primary
decision attribute whether the water level is less than or equal
to the optimal threshold of 300. If the condition is met (<300),
the decision path follows the left branch, leading to the “Open
Servo” classification. Conversely, if the water level exceeds
300, the right branch leads to the “Close Servo” classification.
This visual representation reflects the core logic programmed
into the ESP8266 microcontroller, where each node
corresponds to a decision point and each leaf node denotes a
final action. The diagram demonstrates how the system
processes real-time sensor data in a step-by-step manner to
arrive at an automated irrigation decision.
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Fig 5. Workflow

Fig 4 illustrates the classification workflow used in this
study. The process begins with data collection, followed by
manual calculation of entropy and information gain. After
that, the system-based calculation is performed to validate the
manual results. Once validated, the Decision Tree structure is
determined and implemented in the system. Finally, the
model’s accuracy is tested using a new dataset to ensure the
reliability of the classification logic.

This threshold value of 300 was determined through
entropy and information gain analysis during the Decision
Tree construction process. The rule outlined in Table 8 serves
as the core decision-making logic implemented within the
microcontroller to control the servo motor's behavior in real-
time.

A. Dataset and Classification

The system was evaluated using a dataset of 210 water
level readings collected over 7 days. The dataset was split into
training and testing sets. The classification model based on the
Decision Tree algorithm was built using entropy and gain
calculations. The calculated gain showed that the optimal
decision point was at the 300 threshold.

In this study, the dataset of 210 water level readings was
divided into two subsets: 80% (168 data points) for training
and 20% (42 data points) for testing. The split was performed
randomly to ensure that both subsets contained a
representative distribution of “open” and “close” valve
conditions. No k-fold cross-validation was applied due to the
relatively small dataset size; however, the testing set was kept
completely separate from the training process to prevent data
leakage. The representativeness of the data was confirmed by
matching the proportion of classes in the training and testing
sets. The model’s perfect classification accuracy on the testing
set, consistent with manual calculation results, suggests the
Decision Tree did not overfit during training, although larger-
scale and  cross-validation-based  evaluations  are
recommended for future work.
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TABLE II. ENTROPY AND GAIN CALCULATION BASED ON WATER
LEVEL THRESHOLD
Sample data Total data Open Close Entropy Gain
<=100 27 27 0 0.0000 0.0915
>100 183 69 114 0.9777
<=200 42 42 0 0.0000 0.2622
>200 168 54 114 0.9102
<=300 96 96 0 0.0000 0.9947
>300 114 0 114 0.0000
<=400 126 96 30 0.9353 0.3356
>400 84 0 84 0.0000

Table II shows the results of entropy and information gain
calculations based on several water level threshold candidates.
The goal of this analysis was to determine the most effective
threshold for classifying whether the irrigation valve should
be opened or closed. The data was divided into subsets using
thresholds at 100, 200, 300, and 400, and the corresponding
entropy and gain values were calculated for each split.

As shown in the table, the threshold value of 300 yields
the highest information gain of 0.9947, with both resulting
subsets (<300 and >300) having zero entropy. This indicates
that the classification at this threshold is pure, meaning each
subset contains only one class: either “open” or “close.”
Specifically, all data with a water level <300 resulted in an
“open” decision, while all data with a water level >300 led to
a “close” decision.



This makes 300 the optimal decision point for the Decision
Tree algorithm, and it was used as the primary rule in the final
classification logic. This result confirms the effectiveness of
the chosen threshold for separating the two irrigation
conditions accurately and without ambiguity.

A Python-based implementation of the Decision Tree
algorithm was also developed to validate the manual
calculation results. The classification model produced
consistent outcomes with the manually built tree, showing no
misclassification when tested on 42 new data points. The
model achieved an accuracy of 100%, confirming its
effectiveness in decision-making.

Although the Decision Tree model achieved 100%
classification accuracy during testing, this result should be
interpreted with consideration of potential limitations. The
dataset was collected under relatively stable environmental
and network conditions, which may reduce the presence of
noise or anomalies typically encountered in real-world
operations. While minor network instability was observed
during testing causing brief delays in Blynk updates it did not
affect decision-making at the microcontroller level, as the
classification was executed locally on the ESP8266. Sensor
readings remained consistent during the 7-day evaluation;
however, extended testing under varying environmental
conditions (e.g., extreme temperatures, fluctuating water
quality, or intentional sensor interference) is recommended to
assess system robustness. Acknowledging these factors
increases the transparency and credibility of the reported
results.

TABLE III. ENTROPY AND GAIN CALCULATION USING PYTHON
PROGRAM
Sample data Total data Open Close Entropy Gain

<=100 27 27 0 0.0000 0.0915
>100 183 69 114 0.9777

<=200 42 42 0 0.0000 0.2622
>200 168 54 114 0.9102

<=300 96 96 0 0.0000 0.9947
>300 114 0 114 0.0000

<=400 126 96 30 0.9353 0.3356
>400 84 0 84 0.0000

Table III displays the results of entropy and gain
calculations performed using a Python-based implementation
of the Decision Tree algorithm. This table was generated to
validate the manual calculations shown in Table 6. The data
was split into various thresholds, and the entropy and gain for
each split were calculated programmatically.

As seen in the table, the threshold of <300 again yields the
highest information gain value of 0.9947, with both resulting
branches producing an entropy of 0.0000. This confirms that
the data is perfectly separable at this threshold, as all water
level readings <300 result in an “open” decision and those
>300 lead to a “close” decision.

The selected water level threshold of 300, determined
through entropy and information gain analysis, was validated
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using additional datasets collected from multiple testing
sessions under varying environmental conditions. These
sessions included differences in ambient temperature, water
quality, and electrical supply stability to ensure the threshold
remained reliable. The classification results were consistent
across all validation datasets, confirming that the threshold
effectively separated “open” and “close” valve conditions
without misclassification. Although the prototype evaluation
used 210 data points over 7 days, further sensitivity analysis
with larger and more diverse datasets is planned for future
work to strengthen the robustness of the findings.

The consistency of these results with the manual
calculation further strengthens the wvalidity of the
classification logic. It also demonstrates that the
implementation of the Decision Tree algorithm via Python
can accurately replicate theoretical outcomes, making it a
reliable tool for decision-making in smart irrigation systems.

B. System Performance

The system was programmed using the Arduino IDE and
integrated with the Blynk platform. Users were able to
monitor water levels in real-time via a smartphone. The
system provided automatic and remote control over irrigation,
including notification displays, status indicators, and real-time
valve control.

During testing, the irrigation system responded promptly
to water level changes. The servo motor executed opening and
closing actions reliably based on sensor input. The average
delay from sensor reading to actuator response was less than
2 seconds.

TABLE IV. WATER LEVEL THRESHOLD AND VALVE DECISION LOGIC
No Sensor value Sy s.te.m se.”.’" Irrigation
decision position Status
I. 210 Open valve Rotate 90° On
2. 500 Close valve Rotate 0° Off
3. 240 Open valve Rotate 90° On
4. 600 Close valve Rotate 0° Off
5. 300 Open valve Rotate 90° On

Table IV presents a sample of the system's test results
collected during the implementation phase. Each test record
includes the raw sensor reading, the system’s automated
decision, the resulting servo motor position, and the irrigation
status. The decision rule implemented in the microcontroller
used a threshold of 300 to classify whether the valve should
be opened or closed.

From the table, it is evident that when the water level
sensor reading was <300, the system correctly classified the
condition as “low water level” and executed an “open valve”
command. This triggered the servo motor to rotate to 90°,
activating the irrigation system (status: ON). Conversely,
when the sensor reading exceeded 300, the system issued a
“close valve” command, rotating the servo back to 0° and
deactivating the irrigation (status: OFF).

The system showed consistent behavior across all tests,
confirming that the classification logic and actuator response
functioned as expected. This demonstrates that the IoT-based
control mechanism is capable of making accurate, real-time



decisions based on water level input, thus effectively
automating the irrigation process.

While the main evaluation period for the prototype lasted
7 days with 210 recorded data points, supplementary
performance measurements were also conducted to assess key
operational parameters. The average actuator response latency
from sensor reading to valve action was recorded at less than
5 seconds. Network reliability was observed during varying
internet conditions, with the system maintaining stable
operation except for brief delays during unstable connectivity.
Power consumption measurements indicated that the
ESP8266 and servo motor combination operated within a low-
power range suitable for small-scale farming applications.
These additional observations provide a broader
understanding of the system’s operational characteristics
beyond the main dataset, although future work will include
longer-term testing to further improve generalizability.

C. Challenges

Several  challenges were  encountered  during
implementation, including the need for a stable internet
connection. Unstable networks could delay data updates or
cause temporary disconnections from the Blynk server. In
addition, new users required guidance to configure the Blynk
application and connect to the device network.

Despite these issues, the system operated effectively,
reducing the need for manual monitoring and irrigation. It also
demonstrated that smart irrigation could be implemented on a
small scale using low-cost components and open-source
platforms.

IV. CONCLUSION

This research successfully developed and implemented an
IoT-based automatic irrigation system using the Decision Tree
algorithm for hydroponic farming at Institut Shanti Bhuana
Bengkayang. The system accurately responded to real-time
water level data and controlled irrigation by opening or
closing a valve through a servo motor. The water level sensor
readings were classified using a Decision Tree model that
achieved 100% accuracy, both in manual and Python-based
calculations.

The integration of the Blynk application allowed users to
monitor water levels and control the system remotely via
smartphones, improving accessibility and reducing the need
for manual labor. This system demonstrates that combining
IoT with machine learning algorithms like Decision Tree can
provide a reliable, low-cost, and efficient solution for smart
farming applications, especially on a small scale.

For future development, the system can be enhanced by
integrating additional environmental sensors, such as
temperature and humidity sensors, and by developing a
custom web-based dashboard to improve monitoring
flexibility and reduce dependency on third-party platforms.

The proposed addition of WhatsApp/Telegram
notifications and a customizable dashboard has been outlined
in a preliminary technical roadmap. For the notification
feature, integration with third-party APIs such as Twilio or the
official Telegram Bot API will enable real-time message
delivery triggered by specific system events (e.g., low water
level or valve malfunction). The customizable dashboard will
be developed as a web-based interface hosted locally or on a
lightweight cloud server, allowing users to view historical
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data, adjust thresholds, and manage devices without relying
solely on Blynk. User experience considerations such as
intuitive interface design, minimal configuration steps, and
mobile compatibility will guide the development process to
ensure the system remains accessible to non-technical users
while being scalable for larger deployments.
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