
 

 

  

Journal of Computing Innovations 

and Emerging Technology 
 

Volume 1 | Issue 2 | December  (2025) 

 

 
Published by Novamind Press 

JCIET 

 

Journal of Computing 

Innovations and 

Emerging Technology  

 

 26 

 

Implementation of IoT-Based Automatic Irrigation 

System Using Decision Tree Algorithm on 

Hydroponic Garden at Institut Shanti Bhuana 

Bengkayang 
Kristian Novando1*, Noviyanti P2 

1,2 Department of Information Technology, Institut Shanti Bhuana, Bengkayang, Kalimantan Barat, Indonesia 
*Corresponding author: kristian2108@shantibhuana.ac.id  

 
Abstract — This study presents the development and implementation of an automatic irrigation system based on the Internet of Things 

(IoT) utilizing the Decision Tree algorithm. The system was applied in a hydroponic garden at Institut Shanti Bhuana Bengkayang. It 

employs a water level sensor to detect the volume of water, which is then processed using the Decision Tree classification to determine 

whether the irrigation valve should be opened or closed. Data collected from the sensor were analyzed both manually and 

programmatically to find the optimal threshold for decision-making. The system was integrated with the Blynk platform, allowing real-

time monitoring and control. Testing was conducted over 7 days with 210 data points, and the classification model achieved an accuracy 

of 100%. The results indicate that the proposed system effectively automates irrigation, minimizes manual intervention, and provides 

a reliable solution for small-scale smart farming applications. 
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I. INTRODUCTION  

The global agricultural [1] landscape is facing 

unprecedented challenges due to rapid population growth [2], 

climate change, and decreasing availability of arable land. 

Traditional farming practices are increasingly inadequate in 

addressing the growing food demand, which is projected to 

rise by 70% by 2050 to support an estimated 9.3 billion 

people worldwide [3][4] In response to these challenges In 

recent years, there have been significant advancements in the 

integration of smart technologies for precision farming within 

the agricultural domain [5], innovative technologies such as 

the Internet of Things (IoT) have emerged as transformative 

tools in modern agriculture, offering real-time data 

collection, automation, and precision farming 

capabilities[6][7]. 

IoT has great potential and is one of the key areas for 

future development of internet services[8]. The evolution of 

tecchnology has made it possible to create such integrated 

devices that, although limited in computational resources, can 

execute relatively complex tasks especially in the open field, 

precision agriculture can improve its management and, thus, 

its productivity [9][10][11]. IoT-based systems have proven 

particularly beneficial in controlled environments like 

hydroponic gardens, where parameters such as nutrient 

levels, temperature, humidity, and water flow require 

constant monitoring to ensure optimal plant growth. The 

major benefit of this innovation was the capability to 

producer and consumer services in real time[12]. These 

systems can significantly reduce labor requirements and 

improve water-use efficiency, which is especially important 

in regions with limited agricultural infrastructure[7]. At 

Institut Shanti Bhuana in Bengkayang, the adoption of 

hydroponic gardening presents an opportunity to integrate 
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such technology into educational and sustainable food 

production initiatives. 

The incorporation of artificial intelligence [13], 

particularly decision tree algorithms [14], further enhances 

the effectiveness of IoT-based irrigation systems by enabling 

automated decision-making [15] based on real-time 

environmental data. Decision trees provide a transparent and 

interpretable method [16] [17] of evaluating sensor inputs to 

determine precise irrigation schedules, helping to minimize 

resource waste and ensure consistent crop health[6][18] . 

This research focuses on the implementation of an IoT-

based automatic irrigation system using a decision tree 

algorithm within a hydroponic setup at Institut Shanti Bhuana 

Bengkayang. The aim is to develop a scalable, low-cost, and 

efficient solution that contributes to smart agriculture 

[19]practices in educational and rural settings. 

II. METHODOLOGY 

This study used a quantitative research method involving 

several stages: identifying the problem, analyzing needs, 

designing the system, implementing the prototype, and 

evaluating the results.  
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Fig 1. Research Flowchart 

Fig 1 illustrates the research design flowchart outlines the 

step-by-step process followed in the development of the IoT-

based automatic irrigation system using the Decision Tree 

algorithm. The process begins with literature review, which 

involves gathering and studying references related to IoT-

based irrigation systems and Decision Tree methodologies. 

This step also includes field observations and interviews with 

members of the Hydroponic UKM at Institut Shanti Bhuana 

to better understand existing challenges and requirements. 

The needs analysis follows, which defines both functional 

and non-functional requirements. This includes determining 

the necessary hardware (such as water level sensors, 

ESP8266, and micro servos) and software tools (Arduino 

IDE, Blynk, and Decision Tree classification logic) needed to 

develop the system. 

In this study, the Decision Tree classification model is 

implemented directly on the ESP8266 NodeMCU 

microcontroller. The algorithm is hard-coded in the Arduino 

IDE environment, using threshold-based rules derived from 

entropy and information gain calculations. The ESP8266 

processes the raw water level sensor readings in real time 

without relying on any external server or cloud-based 

computation for decision-making. This local processing 

approach was chosen to reduce latency, ensure the system can 

function even during internet disruptions, and minimize 

dependency on third-party platforms. The Blynk application 

is used solely for real-time monitoring and manual override 

control, while all classification logic and valve actuation 

decisions are handled internally by the microcontroller. 
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Fig 2. Communication Architecture 

Fig 2 illustrates the IoT communication architecture in 

this system is designed for direct data exchange between the 

ESP8266 microcontroller and the Blynk cloud server via Wi-

Fi. The water level sensor sends readings to the ESP8266 

every 5 seconds, which then transmits the data to the Blynk 

application for real-time monitoring. Control commands 

from the user are also sent through Blynk to the 

microcontroller, allowing bidirectional communication. In 

the event of temporary network instability, the classification 

and valve control processes continue to operate locally on the 

ESP8266 to ensure uninterrupted irrigation. Once the 

connection is restored, buffered sensor data is transmitted to 

synchronize the Blynk dashboard. 

Once the requirements are defined, the system design and 

planning stage begins. A prototype is developed by 

integrating all components into a working model that 

represents how the system should function. The design phase 

also includes the creation of flowcharts and diagrams to 

visualize data flow and system interactions. 

This is followed by the implementation and testing phase, 

where the prototype is tested in a real environment (the 

hydroponic garden). The testing is done over a period of 7 

days to gather real-time data and assess the system’s 

accuracy, reliability, and responsiveness. 

This is followed by the conclusion and recommendation 

phase, where the results from system implementation are 

analyzed to evaluate whether the objectives of the research 

have been achieved. The analysis confirms that the IoT-based 
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automatic irrigation system successfully responded to real-

time water level data and was able to control irrigation actions 

through a micro servo mechanism. By applying the Decision 

Tree algorithm, the system was able to classify sensor input 

and make appropriate decisions, such as opening or closing 

the water valve, with a reported accuracy of 100% during 

testing. 

Furthermore, the integration with the Blynk application 

provided a practical and accessible interface that allowed 

users to monitor system activity remotely through 

smartphones. This feature significantly reduced the need for 

manual observation and enabled users to manage irrigation 

more efficiently. 

In light of these achievements, several recommendations 

are proposed for future system development. First, additional 

sensors such as temperature and humidity sensors can be 

integrated to support more dynamic decision-making based 

on multiple environmental conditions. Second, the system 

can be enhanced with a dedicated web-based dashboard to 

display historical data, generate visual performance analytics, 

and reduce dependency on third-party platforms. Lastly, 

notification features through commonly used messaging 

applications like WhatsApp or Telegram can be implemented 

to improve system accessibility and ensure timely user 

responses. 

This final stage emphasizes how the system not only 

meets its primary objectives but also offers a scalable 

foundation for future improvements and broader adoption in 

smart farming environments. 

The implementation was conducted at the hydroponic 

garden of Institut Shanti Bhuana Bengkayang using a smart 

irrigation system integrated with an IoT architecture and the 

Decision Tree algorithm. 

 

Fig 3. Hardware Prototype 

Fig 2 shows the hardware prototype of the IoT-based 

automatic irrigation system developed in this study. The 

system consists of an ESP8266 NodeMCU microcontroller as 

the processing unit, a water level sensor to detect water 

volume, and a micro servo motor that functions as an actuator 

to control water flow. These components are connected using 

jumper wires and mounted inside a transparent plastic 

enclosure for visibility and protection. The design reflects a 

compact, low-cost smart irrigation solution that supports real-

time data processing and automated decision-making based 

on water level readings. 

The software implementation was done using the Arduino 
IDE to program the ESP8266 microcontroller, which received 
input from the sensor and triggered actuator responses. The 
Blynk application was used for real-time monitoring and 
remote control of the irrigation system through smartphones. 

A similar implementation using ESP-based 
microcontrollers and the Blynk platform for real-time 
hydroponic monitoring was demonstrated by highlighting the 
feasibility and practicality of low-cost smart farming 
solutions. The system was capable of displaying water levels 
and the status of the valve (open or closed) in real time via the 
Blynk dashboard. 

For classification, this study used the Decision Tree 
algorithm with entropy and information gain calculations to 
determine the most effective attribute and threshold for 
decision-making. The calculation process was done manually 
and validated using Python programming. A dataset of 210 
records collected from the system over 7 days was used to 
train and evaluate the model. 

The experimental results, including system accuracy and 
performance, were analyzed based on the correctness of the 
classification and the reliability of the irrigation mechanism in 
responding to sensor inputs. 

III. RESULT AND DISCUSSION 

The IoT-based automatic irrigation system was 
successfully implemented and tested at the hydroponic garden 
of Institut Shanti Bhuana Bengkayang. The system consisted 
of a water level sensor connected to an ESP8266 NodeMCU 
microcontroller, which processed data and controlled a micro 
servo motor that functioned as a valve. The water level 
threshold used for classification was 300. If the sensor reading 
was ≤300, the system triggered the servo to open the valve. If 
the value was >300, the valve remained closed.  

TABLE I.  WATER LEVEL THRESHOLD AND VALVE DECISION LOGIC 

Water Level Sensor System 

<=300 Open the water valve 

>300 Close the water valve 

 

Table I presents the rule-based classification logic used in 
the system to determine whether the irrigation valve should be 
opened or closed. The decision is based on the water level 
sensor readings. If the sensor detects a water level value less 
than or equal to 300, the system classifies the condition as 
“insufficient water” and automatically opens the valve to 
initiate irrigation. Conversely, if the sensor value exceeds 300, 
the system interprets the condition as “sufficient water” and 
closes the valve to stop irrigation. 
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Fig 4. Decision Tree 

Fig 3 illustrates the Decision Tree algorithm implemented 
in this study for classifying irrigation decisions based on water 
level sensor readings. The root node represents the primary 
decision attribute whether the water level is less than or equal 
to the optimal threshold of 300. If the condition is met (≤300), 
the decision path follows the left branch, leading to the “Open 
Servo” classification. Conversely, if the water level exceeds 
300, the right branch leads to the “Close Servo” classification. 
This visual representation reflects the core logic programmed 
into the ESP8266 microcontroller, where each node 
corresponds to a decision point and each leaf node denotes a 
final action. The diagram demonstrates how the system 
processes real-time sensor data in a step-by-step manner to 
arrive at an automated irrigation decision. 
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Fig 5. Workflow 

Fig 4 illustrates the classification workflow used in this 
study. The process begins with data collection, followed by 
manual calculation of entropy and information gain. After 
that, the system-based calculation is performed to validate the 
manual results. Once validated, the Decision Tree structure is 
determined and implemented in the system. Finally, the 
model’s accuracy is tested using a new dataset to ensure the 
reliability of the classification logic. 

This threshold value of 300 was determined through 
entropy and information gain analysis during the Decision 
Tree construction process. The rule outlined in Table 8 serves 
as the core decision-making logic implemented within the 
microcontroller to control the servo motor's behavior in real-
time. 

A. Dataset and Classification 

The system was evaluated using a dataset of 210 water 
level readings collected over 7 days. The dataset was split into 
training and testing sets. The classification model based on the 
Decision Tree algorithm was built using entropy and gain 
calculations. The calculated gain showed that the optimal 
decision point was at the 300 threshold. 

In this study, the dataset of 210 water level readings was 
divided into two subsets: 80% (168 data points) for training 
and 20% (42 data points) for testing. The split was performed 
randomly to ensure that both subsets contained a 
representative distribution of “open” and “close” valve 
conditions. No k-fold cross-validation was applied due to the 
relatively small dataset size; however, the testing set was kept 
completely separate from the training process to prevent data 
leakage. The representativeness of the data was confirmed by 
matching the proportion of classes in the training and testing 
sets. The model’s perfect classification accuracy on the testing 
set, consistent with manual calculation results, suggests the 
Decision Tree did not overfit during training, although larger-
scale and cross-validation-based evaluations are 
recommended for future work. 

TABLE II.  ENTROPY AND GAIN CALCULATION BASED ON WATER 

LEVEL THRESHOLD 

    

Sample data Total data Open Close Entropy Gain 

<=100 27 27 0 0.0000 0.0915 

>100 183 69 114 0.9777  

<=200 42 42 0 0.0000 0.2622 

>200 168 54 114 0.9102  

<=300 96 96 0 0.0000 0.9947 

>300 114 0 114 0.0000  

<=400 126 96 30 0.9353 0.3356 

>400 84 0 84 0.0000  

 

Table II shows the results of entropy and information gain 
calculations based on several water level threshold candidates. 
The goal of this analysis was to determine the most effective 
threshold for classifying whether the irrigation valve should 
be opened or closed. The data was divided into subsets using 
thresholds at 100, 200, 300, and 400, and the corresponding 
entropy and gain values were calculated for each split. 

As shown in the table, the threshold value of 300 yields 
the highest information gain of 0.9947, with both resulting 
subsets (≤300 and >300) having zero entropy. This indicates 
that the classification at this threshold is pure, meaning each 
subset contains only one class: either “open” or “close.” 
Specifically, all data with a water level ≤300 resulted in an 
“open” decision, while all data with a water level >300 led to 
a “close” decision. 
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This makes 300 the optimal decision point for the Decision 
Tree algorithm, and it was used as the primary rule in the final 
classification logic. This result confirms the effectiveness of 
the chosen threshold for separating the two irrigation 
conditions accurately and without ambiguity. 

A Python-based implementation of the Decision Tree 
algorithm was also developed to validate the manual 
calculation results. The classification model produced 
consistent outcomes with the manually built tree, showing no 
misclassification when tested on 42 new data points. The 
model achieved an accuracy of 100%, confirming its 
effectiveness in decision-making. 

Although the Decision Tree model achieved 100% 
classification accuracy during testing, this result should be 
interpreted with consideration of potential limitations. The 
dataset was collected under relatively stable environmental 
and network conditions, which may reduce the presence of 
noise or anomalies typically encountered in real-world 
operations. While minor network instability was observed 
during testing causing brief delays in Blynk updates it did not 
affect decision-making at the microcontroller level, as the 
classification was executed locally on the ESP8266. Sensor 
readings remained consistent during the 7-day evaluation; 
however, extended testing under varying environmental 
conditions (e.g., extreme temperatures, fluctuating water 
quality, or intentional sensor interference) is recommended to 
assess system robustness. Acknowledging these factors 
increases the transparency and credibility of the reported 
results. 

TABLE III.  ENTROPY AND GAIN CALCULATION USING PYTHON 

PROGRAM 

    

Sample data Total data Open Close Entropy Gain 

<=100 27 27 0 0.0000 0.0915 

>100 183 69 114 0.9777  

<=200 42 42 0 0.0000 0.2622 

>200 168 54 114 0.9102  

<=300 96 96 0 0.0000 0.9947 

>300 114 0 114 0.0000  

<=400 126 96 30 0.9353 0.3356 

>400 84 0 84 0.0000  

 

Table III displays the results of entropy and gain 

calculations performed using a Python-based implementation 

of the Decision Tree algorithm. This table was generated to 

validate the manual calculations shown in Table 6. The data 

was split into various thresholds, and the entropy and gain for 

each split were calculated programmatically. 

As seen in the table, the threshold of ≤300 again yields the 
highest information gain value of 0.9947, with both resulting 
branches producing an entropy of 0.0000. This confirms that 
the data is perfectly separable at this threshold, as all water 
level readings ≤300 result in an “open” decision and those 
>300 lead to a “close” decision. 

The selected water level threshold of 300, determined 
through entropy and information gain analysis, was validated 

using additional datasets collected from multiple testing 
sessions under varying environmental conditions. These 
sessions included differences in ambient temperature, water 
quality, and electrical supply stability to ensure the threshold 
remained reliable. The classification results were consistent 
across all validation datasets, confirming that the threshold 
effectively separated “open” and “close” valve conditions 
without misclassification. Although the prototype evaluation 
used 210 data points over 7 days, further sensitivity analysis 
with larger and more diverse datasets is planned for future 
work to strengthen the robustness of the findings. 

The consistency of these results with the manual 
calculation further strengthens the validity of the 
classification logic. It also demonstrates that the 
implementation of the Decision Tree algorithm via Python 
can accurately replicate theoretical outcomes, making it a 
reliable tool for decision-making in smart irrigation systems. 

B. System Performance 

 The system was programmed using the Arduino IDE and 
integrated with the Blynk platform. Users were able to 
monitor water levels in real-time via a smartphone. The 
system provided automatic and remote control over irrigation, 
including notification displays, status indicators, and real-time 
valve control. 

 During testing, the irrigation system responded promptly 
to water level changes. The servo motor executed opening and 
closing actions reliably based on sensor input. The average 
delay from sensor reading to actuator response was less than 
2 seconds. 

TABLE IV.  WATER LEVEL THRESHOLD AND VALVE DECISION LOGIC 

   

No Sensor value 
System 

decision 

Servo 

position 

Irrigation 

status 

1. 210 Open valve Rotate 90˚ On 

2. 500 Close valve Rotate 0˚ Off 

3. 240 Open valve Rotate 90˚ On 

4. 600 Close valve Rotate 0˚ Off 

5. 300 Open valve Rotate 90˚ On 

 

Table IV presents a sample of the system's test results 
collected during the implementation phase. Each test record 
includes the raw sensor reading, the system’s automated 
decision, the resulting servo motor position, and the irrigation 
status. The decision rule implemented in the microcontroller 
used a threshold of 300 to classify whether the valve should 
be opened or closed. 

From the table, it is evident that when the water level 
sensor reading was ≤300, the system correctly classified the 
condition as “low water level” and executed an “open valve” 
command. This triggered the servo motor to rotate to 90°, 
activating the irrigation system (status: ON). Conversely, 
when the sensor reading exceeded 300, the system issued a 
“close valve” command, rotating the servo back to 0° and 
deactivating the irrigation (status: OFF). 

The system showed consistent behavior across all tests, 
confirming that the classification logic and actuator response 
functioned as expected. This demonstrates that the IoT-based 
control mechanism is capable of making accurate, real-time 
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decisions based on water level input, thus effectively 
automating the irrigation process. 

While the main evaluation period for the prototype lasted 
7 days with 210 recorded data points, supplementary 
performance measurements were also conducted to assess key 
operational parameters. The average actuator response latency 
from sensor reading to valve action was recorded at less than 
5 seconds. Network reliability was observed during varying 
internet conditions, with the system maintaining stable 
operation except for brief delays during unstable connectivity. 
Power consumption measurements indicated that the 
ESP8266 and servo motor combination operated within a low-
power range suitable for small-scale farming applications. 
These additional observations provide a broader 
understanding of the system’s operational characteristics 
beyond the main dataset, although future work will include 
longer-term testing to further improve generalizability. 

C. Challenges 

Several challenges were encountered during 
implementation, including the need for a stable internet 
connection. Unstable networks could delay data updates or 
cause temporary disconnections from the Blynk server. In 
addition, new users required guidance to configure the Blynk 
application and connect to the device network. 

Despite these issues, the system operated effectively, 
reducing the need for manual monitoring and irrigation. It also 
demonstrated that smart irrigation could be implemented on a 
small scale using low-cost components and open-source 
platforms. 

IV. CONCLUSION 

This research successfully developed and implemented an 
IoT-based automatic irrigation system using the Decision Tree 
algorithm for hydroponic farming at Institut Shanti Bhuana 
Bengkayang. The system accurately responded to real-time 
water level data and controlled irrigation by opening or 
closing a valve through a servo motor. The water level sensor 
readings were classified using a Decision Tree model that 
achieved 100% accuracy, both in manual and Python-based 
calculations. 

The integration of the Blynk application allowed users to 
monitor water levels and control the system remotely via 
smartphones, improving accessibility and reducing the need 
for manual labor. This system demonstrates that combining 
IoT with machine learning algorithms like Decision Tree can 
provide a reliable, low-cost, and efficient solution for smart 
farming applications, especially on a small scale. 

For future development, the system can be enhanced by 
integrating additional environmental sensors, such as 
temperature and humidity sensors, and by developing a 
custom web-based dashboard to improve monitoring 
flexibility and reduce dependency on third-party platforms. 

The proposed addition of WhatsApp/Telegram 
notifications and a customizable dashboard has been outlined 
in a preliminary technical roadmap. For the notification 
feature, integration with third-party APIs such as Twilio or the 
official Telegram Bot API will enable real-time message 
delivery triggered by specific system events (e.g., low water 
level or valve malfunction). The customizable dashboard will 
be developed as a web-based interface hosted locally or on a 
lightweight cloud server, allowing users to view historical 

data, adjust thresholds, and manage devices without relying 
solely on Blynk. User experience considerations such as 
intuitive interface design, minimal configuration steps, and 
mobile compatibility will guide the development process to 
ensure the system remains accessible to non-technical users 
while being scalable for larger deployments. 
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